ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2234355

ИСПАРИТЕЛЬНЫЙ ОПРЕСНИТЕЛЬ

ИСПАРИТЕЛЬНЫЙ ОПРЕСНИТЕЛЬ

Имя изобретателя: Афанасьев В.С. (RU); Бритвин Л.Н. (RU); Бритвин Э.Н. (RU); Щепочкин А.В. 
Имя патентообладателя: Общество с ограниченной ответственностью "Научно- производственная фирма "ТГМ"
Адрес для переписки: 111673, Москва, а/я 60, ООО "НПФ "ТГМ"
Дата начала действия патента: 2003.09.10 

Предложен испарительный опреснитель, содержащий испаритель с емкостью со свободным уровнем жидкости, сообщенной через нагнетатель пара с конденсационным устройством, теплообменник подогрева поступающей для опреснения холодной морской воды, каналы отвода дистиллята и отвода рассола. Для повышения эффективности, устранения отложений солей в испарителе и снижения эксплуатационных затрат емкость со свободным уровнем жидкости снабжена вихревой камерой, сообщенной с кавитационно-вихревым теплогенератором с образованием контура циркуляции опресняемой жидкости в испарителе и сообщенной с указанным контуром циркуляции сепарационной камерой, сообщенной с каналом отвода рассола. Для дополнительного упрощения конструкции, повышения устойчивости рабочего процесса и эффективности опреснителя кавитационно-вихровой теплогенератор через сопло тангенциально сообщен с входом в вихревую камеру испарителя. Емкость испарителя выполнена осесимметричной и вертикальной, содержит встроенный теплообменник конденсационного устройства и снабжена горизонтальными перегородками, образующими дополнительные полости, причем верхняя полость снабжена распылительными форсунками.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Предложен опреснитель преимущественно для дистилляционного получения пресной воды из морской воды, который однако может быль использован для деминерализации шахтных вод и в технологических процессах различных производств.

Известен рекуперационный опреснитель, например по патенту России № 2142912 С1, в котором для повышения производительности дистилляционного опреснителя осуществлена практически полная рекуперация тепловой энергии, идущей на нагрев и испарение поступающей в испаритель жидкости, посредством применения теплообменников и тепловых труб (аналог). Однако техническая реализация предложенного опреснителя, а также и вывод его на рабочий режим чрезвычайно сложны что является его существенным недостатком.

Известен также опреснитель по патенту России № 2077488, В 01 D 3/06, состоящий из испарителя с внешним нагревателем опресняемой жидкости, парогенерирующей емкостью со свободным уровнем жидкости, по меньшей мере одним рекуперационным теплообменником возврата в испаритель тепла, получаемого испаряемой жидкостью в рабочем процессе опреснения, нагнетатель пара из испарителя в конденсатор, каналов для подвода опресняемой жидкости к испарителю, каналов слива дистиллята и рассола (прототип).

Данное техническое решение достаточно просто конструктивно, но однако не обеспечивает рекуперации теплоты парообразования, которая сбрасывается через конденсатор и непроизводительно теряется. Кроме того, нагрев испаряемой жидкости посредством высокотемпературных источников тепла приводит к возникновению отложений солей на нагревательных поверхностях, что существенно усложняет эксплуатацию и снижает производительность данного типа дистилляционных опреснителей.

Предложенное техническое решение дистилляционного опреснителя, обладая конструктивной и технологической простотой, обеспечивает практически полную рекуперацию энергии в рабочем процессе дистилляционного опреснения, легко (практически автоматически) выводится на рабочий режим, обладает высокой производительностью, а также в вариантах исполнения позволяет осуществлять непрерывную и продолжительную эксплуатацию без какого-либо загрязнения внутренних рабочих поверхностей испарителя и нагревателя.

Указанные положительные свойства предложенного устройства обеспечиваются тем, что

- емкость со свободным уровнем жидкости снабжена по меньшей мере одной вихревой камерой, гидравлически сообщенной с выходным и входным каналами кавитационно-вихревого приводного теплогенератора с образованием контура циркуляции опресняемой жидкости в испарителе, и по меньшей мере одной гидравлически сообщенной с указанным контуром циркуляции сепарационной камерой, сообщенной с каналом отвода рассола, причем теплообменник конденсационного устройства сообщен по теплу с контуром циркуляции опресняемой воды в испарителе;

- теплообменник конденсационного устройства своим входом подключен к вихревой камере в зоне повышенного давления, а своим выходом подключен к вихревой камере в зоне пониженного давления;

- выход теплообменника подогрева поступающей на опреснение воды сообщен с входным каналом кавитационно-вихревого приводного теплогенератора;

- теплообменник подогрева поступающей на опреснение воды выполнен из теплообменников отбора тепла от сливаемых из опреснителя дистиллята и рассола;

- кавитационно-вихревой теплогенератор своим выходным каналом через сопло тангенциально сообщен с входом в вихревую камеру испарителя и своим входным каналом с выходом из вихревой камеры через устройство повышения гидростатического давления;

- емкость испарителя выполнена осесимметричной и вертикальной и снабжена горизонтальными перегородками, образующими дополнительные гидравлически сообщенные с кавитационно-вихревым теплогенератором полости, причем верхняя полость снабжена распылительными форсунками, полость под ней выполнена парогенерирующей со свободным уровнем вращающейся в ней жидкости по меньшей мере за счет гидравлической ее непосредственной связи через каналы в горизонтальной перегородке с расположенной под ней вихревой камерой контура циркуляции опресняемой жидкости;

- сепарационная камера отвода рассола расположена под вихревой камерой и сообщена с ней через каналы в разделяющей их горизонтальной перегородке;

- в емкости испарителя установлен датчик уровня свободной поверхности опресняемой жидкости, сообщенный с регулятором расхода поступающей в испаритель жидкости;

- нагнетатель пара выполнен в виде приводной высоконапорной гидромашины, например, лопастного типа;

- нагнетатель пара к конденсатор выполнены в виде эжекционного устройства, высоконапорное сопло которого включено в контур циркуляции дистиллята, а выход камеры смешения которого гидравлически сообщен со входом насоса контура циркуляции дистиллята, который по теплу сообщен с контуром циркуляции опресняемой в испарителе жидкости через теплообменник конденсационного устройства;

- теплообменник конденсационного устройства непосредственно встроен в емкость испарителя.

ИСПАРИТЕЛЬНЫЙ ОПРЕСНИТЕЛЬ ИСПАРИТЕЛЬНЫЙ ОПРЕСНИТЕЛЬ

На фиг.1 и 2 показаны два из множества возможных технических решений предложенного опреснителя.

Испарительный опреснитель 1 содержит испаритель с испарительной парогенерирующей емкостью 2 со свободным уровнем жидкости 3, сообщенной через нагнетатель пара 4 с конденсационным устройством 5, а также теплообменник 6 подогрева поступающей для опреснения жидкости, например холодной морской воды, канал отвода дистиллята 7 и канал отвода рассола 8.

Емкость 2 со свободным уровнем жидкости 3 снабжена по меньшей мере одной вихревой камерой 9, гидравлически сообщенной с выходным 10 и входным (всасывающим) каналом 11 кавитационно-вихревого приводного теплогенератора 12 с образованием контура циркуляции опресняемой жидкости в испарителе 1, который также гидравлически сообщен с по меньшей мере одной сепарационной камерой 13, гидравлически сообщенной с каналом отвода рассола 8, например, через дроссельный регулятор расхода 14, например, управляемый по концентрации солей в сепарационной камере 13 посредством датчика 15.

Теплообменник конденсационного устройства 5 сообщен по теплу с контуром циркуляции опресняемой воды испарителя 1, например, посредством трубопроводов 16 и 17. Трубопровод 16 подключен к вихревой камере 9 на ее периферии, т.е. в зоне повышенного давления, а трубопровод 17 через регулирующий дроссель 18 (в вариантах исполнения дроссель 18 может отсутствовать) подключен по оси вихревой камеры, т.е. к зоне пониженного давлений камеры 9, что обеспечивает требуемый расход опресняемой жидкости через теплообменник конденсационного устройства 5 и требуемую передачу выделяемого там (при конденсации пара) тепла в испаритель 1. Понятно, что в вариантах исполнения теплообменник конденсационного устройства 5 может быть подключен к контуру циркуляции испарителя посредством дополнительного циркуляционного насоса (не показан). Рационально по меньшей мере часть подаваемой в испаритель жидкости, если она холоднее жидкости в контуре циркуляции испарителя, вводить в входной канал 11 тепло генератора 12 (для улучшения процесса всасывания его насосной части), например, по каналу 19 теплообменника 20 отбора тепла, установленного на линии 8 слива рассола. Теплообменники 6 и 20 в совокупности представляют собой теплообменник подогрева поступающей на опреснение воды.

Кавитационно-вихревой теплогенератор 12 своим выходным каналом 10 через тангенциально установленное сопло 21 подключен к вихревой камере 9 испарителя, а своим входным каналом 11 подключен к камере 9 через устройство повышения гидростатического давления, на фиг.1 выполненного в виде патрубка 22, установленного на периферии камеры 9 навстречу натекающему потоку жидкости, что обеспечивает безкавитационную работу насосной части теплогенератора 12.

В варианте по фиг.1 емкость 2 испарителя 1 выполнена осесимметричной и вертикальной и снабжена горизонтальными перегородками 23 и 24, образующими дополнительные гидравлически сообщенные с кавитационно-вихревым теплогенератором 12 полости 24, 2 и 9, причем верхняя полость 25 снабжена распылительными форсунками 26 (форсунки могут выполняться в виде каналов и отверстий непосредственно в перегородке 24), полость 2 под перегородкой 24 выполнена парогенерирующей со свободным уровнем 3 вращающейся в ней жидкости по меньшей мере за счет гидравлической ее непосредственной связи через каналы 27 в перегородке 23 с расположенной под ней вихревой камерой 9 контура циркуляции опресняемой жидкости.

Сепарационная камера может быть также выполнена в едином корпусе с камерами 2, 9, 25, например, под вихревой камерой 9, см. камеру 28 на фиг.2, и сообщена с ней через каналы в разделяющей их перегородке 29. Устройство повышения гидростатического давления во входном канале 11 теплогенератора 12 в варианте выполнения по фиг.2 выполнено в виде соосно расположенного в вихревой камере 9 лопастного направляющего аппарата 30. В емкости 2 со свободным уровнем жидкости 3 установлен датчик 31 уровня свободной поверхности 3 опресняемой жидкости, сообщенный с регулятором 32 расхода поступающей в испаритель жидкости.

В варианте по фиг.2 нагнетатель пара и конденсационное устройство выполнены в виде эжекционного устройства, высоконапорное сопло 33 которого включено в контур циркуляции дистиллята 34, а выход камеры смешения 35 гидравлически сообщен со входом насоса 36 контура циркуляции 34, который по теплу сообщен с контуром циркуляции испаряемой в испарителе 1 жидкости через теплообменник 37 и теплообменник 38, причем теплообменник 37 конденсационного устройства непосредственно встроен в емкость 2 испарителя, а теплообменник 38 конденсационного устройства выполнен выносным или может быть непосредственно встроен в корпус испарителя 1. Для интенсификации испарения в емкости 2 по оси установлены турбулезаторы пара 42, приводимые или непосредственно от внешнего электродвигателя 39 (см. фиг.1), или от турбины 40, установленной в вихревой камере 9 в ее центральной части (см. фиг.2).

Работает описываемое устройство следующим образом.

Опреснитель заполняется опресняемой жидкостью через регулятор расхода 32, включается теплогенератор 12 (любого известного типа, например, по патенту РФ, заявка № 99110396) и осуществляется нагрев жидкости в испарителе, образующийся в парогенерирующей емкости 2 пар при включении электродвигателя 39 или насоса 36 отсасывается из испарителя 1, что приводит к понижению давления в емкости 2 и повышению давления в конденсационном устройстве (за счет гидравлического сопротивления теплообменника 5 и/или дросселирующего устройства 41, см. фиг.1, или контура циркуляции 34, см. фиг.2). При температуре в конденсационном устройстве более высокой, чем в испарителе, происходит конденсация пара, а теплота парообразования, выделяемая при конденсации пара, посредством теплообменника 5, см. фиг.1, или теплообменников 37 и 38 передается жидкости в испарителе, интенсифицируя процесс парогенерирования. Эффективность опреснителя также повышается за счет подогрева подводимой к опреснителю холодной жидкости через регенеративные теплообменники 6 и 20, см. фиг.1, или 6 и 61, см. фиг.2.

Особенность рабочего процесса опреснителя по фиг.2 в том, что при пуске опреснителя следует предварительно заполнить дистиллятом контур циркуляции 34 дистиллята. Получаемый дистиллят сливается по каналам 7.

Описываемый испарительный опреснитель достаточно прост конструктивно и не требует частого обслуживания, поскольку кавитационно-вихревые процессы, генерируемые в теплогенераторе 12, не допускают отложения солей в трубопроводах и рабочих полостях испарителя, что также позволяет сбрасывать из испарителя рассол с высокой концентрацией солей и реализовывать непрерывный процесс опреснения. Процесс пуска и поддержание оптимального рабочего процесса опреснителя достигаются при достаточно простой автоматизации опреснителя.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Испарительный опреснитель, содержащий испаритель с емкостью со свободным уровнем жидкости, сообщенной через нагнетатель пара с конденсационным устройством, теплообменник подогрева поступающей для опреснения холодной морской воды, каналы отвода дистиллята и отвода рассола, отличающийся тем, что емкость со свободным уровнем жидкости снабжена по меньшей мере одной вихревой камерой, гидравлически сообщенной с выходным и входным каналами кавитационно-вихревого приводного теплогенератора с образованием контура циркуляции опресняемой жидкости в испарителе и по меньшей мере одной гидравлически сообщенной с указанным контуром циркуляции сепарационной камерой, сообщенной с каналом отвода рассола, причем теплообменник конденсационного устройства сообщен по теплу с контуром циркуляции опресняемой воды в испарителе.

2. Испарительный опреснитель по п.1, отличающийся тем, что теплообменник конденсационного устройства своим входом подключен к вихревой камере в зоне повышенного давления, а своим выходом подключен к вихревой камере в зоне пониженного давления.

3. Испарительный опреснитель по п.1 или 2, отличающийся тем, что выход теплообменника подогрева поступающей на опреснение воды сообщен с входным каналом кавитационного-вихревого приводного теплогенератора.

4. Испарительный опреснитель по пп.1-3, отличающийся тем, что теплообменник подогрева поступающей на опреснение воды выполнен из теплообменников отбора тепла от сливаемых из опреснителя дистиллята и рассола.

5. Испарительный опреснитель по пп.1-4, отличающийся тем, что кавитационно-вихровой теплогенератор своим выходным каналом через сопло тангенциально сообщен с входом в вихревую камеру испарителя и своим входным каналом с выходом из вихревой камеры через устройство повышения гидростатического давления.

6. Испарительный опреснитель по пп.1-5, отличающийся тем, что емкость испарителя выполнена осесимметричной и вертикальной и снабжена горизонтальными перегородками, образующими дополнительные гидравлически сообщенные с кавитационно-вихревым теплогенератором полости, причем верхняя полость снабжена распылительными форсунками, полость под ней выполнена парогенерирующей со свободным уровнем вращающейся в ней жидкости по меньшей мере за счет гидравлической ее непосредственной связи через каналы в горизонтальной перегородке с расположенной под ней вихревой камерой контура циркуляции опресняемой жидкости.

7. Испарительный опреснитель по п.6, отличающийся тем, что сепарационная камера отвода рассола расположена под вихревой камерой и сообщена с ней через каналы в разделяющей их горизонтальной перегородке.

8. Испарительный опреснитель по пп.1-7, отличающийся тем, что в емкости испарителя установлен датчик уровня свободной поверхности опресняемой жидкости, сообщенный с регулятором расхода поступающей в испаритель жидкости.

9. Испарительный опреснитель по пп.1-8, отличающийся тем, что нагнетатель пара выполнен в виде приводной высоконапорной гидромашины, например, лопастного типа.

10. Испарительный опреснитель по пп.1-8, отличающийся тем, что нагнетатель пара и конденсатор выполнены в виде эжекционного устройства, высоконапорное сопло которого включено в контур циркуляции дистиллята, а выход камеры смешения которого гидравлически сообщен со входом насоса контура циркуляции дистиллята, который по теплу сообщен с контуром циркуляции опресняемой в испарителе жидкости через теплообменник конденсационного устройства.

11. Испарительный опреснитель по пп.1-10, отличающийся тем, что теплообменник конденсационного устройства непосредственно встроен в емкость испарителя.

Версия для печати
Дата публикации 24.02.2007гг


вверх