УСТРОЙСТВО ДЛЯ ОБЕЗЗАРАЖИВАНИЯ И ОЧИСТКИ ВОДЫ

УСТРОЙСТВО ДЛЯ ОБЕЗЗАРАЖИВАНИЯ И ОЧИСТКИ ВОДЫ


RU (11) 2040477 (13) C1

(51) 6 C02F1/46 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 26.12.2007 - прекратил действие, но может быть восстановлен 

--------------------------------------------------------------------------------

(21) Заявка: 5035666/26 
(22) Дата подачи заявки: 1992.04.03 
(45) Опубликовано: 1995.07.25 
(56) Список документов, цитированных в отчете о поиске: 1. Авторское свидетельство СССР N 882944, кл. C 02F 1/46, 1979. 2. Заявка Японии N 1-104387, кл. C 02F 1/46, 1989. 
(71) Заявитель(и): Бахир Витольд Михайлович; Задорожний Юрий Георгиевич; Рахманин Юрий Анатольевич 
(72) Автор(ы): Бахир Витольд Михайлович; Задорожний Юрий Георгиевич; Рахманин Юрий Анатольевич 
(73) Патентообладатель(и): Бахир Витольд Михайлович; Задорожний Юрий Георгиевич; Рахманин Юрий Анатольевич 

(54) УСТРОЙСТВО ДЛЯ ОБЕЗЗАРАЖИВАНИЯ И ОЧИСТКИ ВОДЫ 

Изобретение относится к устройствам для электрохимической обработки воды и может быть использовано для получения питьевой воды. Обрабатываемая вода от напорного источника 1 через фильтр 2 поступает в анодную камеру и через регулятор 7 расхода воды в катодную камеру 5 проточного, работающего под повышенным давлением электрохимического реактора модульного типа с пористой ультрафильтрационной керамической диафрагмой. Во время протока воды через анодную камеру происходит образование активного хлора, обеззараживающего микроорганизмы и окисляющего органические примеси, а в катодной камере органические примеси подвергаются восстановлению. После выхода из анодной камеры вода проходит через емкость 6 с катализатором, на котором активный хлор разрушается. 2 ил. 1 табл. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к устройствам для электрохимической обработки воды и может быть использовано для получения питьевой воды.

В прикладной электрохимии используются электролизеры различных конструкций, обеспечивающие обработку воды.

Известен электролизер для обработки воды, содержащий корпус, разделенный диафрагмой на анодную и катодную камеры с размещенными в них перфорированными электродами, прижатыми к диафрагме, поверхность которых, обращенная к диафрагме, покрыта электроизоляционным материалом, а перфорация электродов выполнена соосно [1]

В этом электролизере рабочая поверхность диафрагмы ограничена площадью перфорационных отверстий в электродах, а остальная поверхность не используется. Рабочая поверхность электродов также меньше возможной на величину площади перфорационных отверстий. Для получения необходимой рабочей поверхности электродов и диафрагмы используют листовой материал диафрагмы и электродов вдвое больших размеров. Это приводит к увеличению веса, габаритов, усложнению конструкции.

При сборке и ремонте значительных трудозатрат требуют операции герметизации плоского пакета из электродов и зажатой между ними диафрагмы с одновременным совмещением осей многочисленных отверстий в электродах. Распределение тока по площади диафрагмы в отверстии электрода неоднородно. Прогрессирующая вследствие этого неравномерность свойств полимерного материала диафрагмы приводит к ухудшению характеристик электролизера и снижению его надежности.

Так как электроды не отделены от диафрагмы слоем протекающей воды, то наиболее активные продукты электрохимических реакций, обладающие значительной электрофоретической подвижностью, движутся от поверхности электродов к диафрагме, проникают в нее и взаимно нейтрализуются. Они не участвуют в изменении свойств протекающей в электродных камерах воды, что уменьшает КПД процесса электрохимической обработки.

Наиболее близким к изобретению по технической сущности и достигаемому результату является устройство для электролиза воды [2] состоящее из цилиндрического электролизера с коаксиально расположенными электродами и диафрагмой между ними, разделяющей внутреннее пространство на катодную и анодную камеры. Каждая камера имеет отдельный вход в нижней и отдельный выход в верхней частях электролизера, сообщающиеся с подводящими и отводящими гидравлическими линиями для протока воды под давлением. Устройство содержит источник постоянного тока, соединенный с электродами электролизера через коммутационный узел, обеспечивающий возможность перемены полярности электродов для удаления катодных отложений. В процессе эксплуатации данного устройства возможно получение электрохимически обработанной воды с бактерицидными свойствами.

Недостатком данного устройства являются значительные энергопотери при обработке воды с изменяющейся во времени минерализацией. Чем больше минерализация воды, тем большее удельное количество электричества требуется для ее обработки, т.е. тем больше необходимая сила тока при постоянном объемном расходе воды. При уменьшении минерализации воды необходимо высокое напряжение для того, чтобы достичь требуемого уровня удельных затрат количества электричества без снижения объемного расхода воды. Чем шире диапазон возможных изменений минерализации воды, тем выше должна быть электрическая мощность источника постоянного тока, поскольку эта мощность определяется произведением максимально возможной силы тока на максимально возможное напряжение. Практически отсутствуют случаи, когда мощность используется полезно полностью.

При обработке воды со значительной минерализацией протекает большой ток при малом напряжении, при обработке воды с малой линерализацией малый при большом напряжении. Потребляемая электролизером мощность в несколько раз (от 3 до 10) меньше установленной мощности источника тока, т.е. устройство для электролиза воды имеет низкий КПД.

Кроме того, устройство не обеспечивает стабильность характеристик получаемых растворов при минерализации исходной воды.

Цель изобретения снижение энергозатрат на обработку воды и повышение качества обработанной воды.

Цель достигается за счет применения устройства, содержащего электролитический элемент, в состав которого входят цилиндрический и стержневой электроды, вертикально установленные в диэлектрических втулках, а также керамическая диафрагма, изготовленная из керамики на основе циркония с добавками оксидов иттрия и алюминия и установленная таким образом, что геометрические размеры устройства удовлетворяют соотношениям

и 0,7-0,8 где K межэлектродное расстояние, мм;

L длина рабочей части электродной камеры, мм;

Ds внутренний диаметр цилиндрического электрода, мм;

Db диаметр средней части стержневого электрода, мм;

Ss, Sb площади поперечного сечения камер соответственно цилиндрического и стержневого электродов, м2.

В верхней и нижней частях цилиндрического электрода выполнены отверстия, нижнее из которых соединено с линией подачи воды в камеру цилиндрического электрода, стержневой электрод выполнен переменного сечения и диаметр его концов составляет 0,75 диаметра его средней части, причем стержневой электрод установлен таким образом, что его средняя часть с большим диаметром расположена на уровне, ограниченном отверстиями в верхней и нижней частях цилиндрического электрода, цилиндрический электрод соединен с положительным, а стержневой с отрицательным полюсом источника тока и устройство дополнительно содержит емкость с катализатором, имеющую вход в верхней и выход в нижней частях емкости и регулятор расхода, причем вход в емкость с катализатором соединен с отверстием в верхней части цилиндрического электрода, выход емкости с катализатором соединен с линией отвода обработанной воды, а регулятор расхода воды установлен перед входом в камеру стержневого электрода.

В практике обработки воды электрохимическими методами известно использование пиролюзита (MnO2), причем данная каталитическая загрузка располагается между электродами.

Такое техническое решение имеет существенный недостаток; в междуэлектродном пространстве гранулы катализатора работают как биполярные микроэлектроды, вследствие чего они разрушаются и уносятся с потоком очищенной воды. Возможно также забивание пор между гранулами катализатора и уменьшение пропускной способности электролизера.

На фиг.1 представлена схема устройства для обеззараживания и очистки воды; на фиг.2 электролитический элемент модульного типа.

Устройство состоит из напорного источника 1 обрабатываемой воды, фильтра 2, из электролитического элемента модульного типа (ПЭМ) 3, выполненного в виде диафрагменного цилиндрического электролизера, разделенного керамической диафрагмой на анодную 4 и катодную 5 камеры, емкости 6 с катализатором, соединенной с анодной камерой и регулятора расхода воды 7, установленного перед входом в катодную камеру.

Основным узлом устройства для получения питьевой воды является элемент ПЭМ, представляющий собой миниатюрный диафрагменный электролизер с коаксиальным расположением внешнего цилиндрического анода 8, внутреннего стержневого катода 9 и трубчатой керамической диафрагмы 10 между электродами. Электроды и диафрагма жестко герметично взаимно закреплены при помощи уплотнительных колец 11 и 12 и торцовых втулок 13 из диэлектрического материала, являющихся продолжением внешней цилиндрической поверхности элемента ПЭМ. На внешней поверхности элемента ПЭМ расположены входы 14 и 15 и выходы 16 и 17 электродных камер. Они выполнены в виде отверстий в торцовых втулках 13 и цилиндрическом электроде 8 у его концов. Сборка и герметизация электролитического элемента производится при стягивании втулок 13 к торцам электрода 8 гайками 18 и шайбами 19 на концах электрода 9. Зазоры между электродами 8 и 9 и диафрагмой 10 равны 1,2 мм. Расстояние между электродами 8 и 9 равно 3 мм, толщина ультрафильтрационной диафрагмы 10 находится в пределах 0,58-0,62 мм. Диаметр средней части внутреннего стержневого электрода равен 8 мм, а его концевых частей 6 мм.

Длина рабочей части диафрагмы составляет 200 мм. Рабочая поверхность диафрагмы заключена между уплотнительными кольцами 11. Площадь рабочей поверхности цилиндрического электрода 8 составляет 88 см2, стержневого 50 см2.

Геометрические размеры устройства удовлетворяют соотношениям

и 0,7-0,8 где К межэлектродное расстояние, мм;

L длина рабочей части электродной камеры, мм;

Ds внутренний диаметр цилиндрического электрода, мм;

Db диаметр средней части стержневого электрода, мм;

Ss, Sb площади поперечного сечения камер соответственно цилиндрического и стержневого электродов, м2.

Сочетание указанных размеров электродов и диафрагмы обеспечивает равномерное распределение потока воды по поверхности электродов и одинаковую скорость течения в любом сечении электродной камеры. В кольцевых вертикальных гладкостенных электродных камерах отсутствуют условия для образования застойных зон и зон медленного протока. Такие зоны отрицательно влияют на характеристики любого электролитического реактора, а именно электрохимические процессы провоцируют их образование. Например, при протекании воды в системе параллельных плоских электродов наблюдаются разные по толщине слои воды, неоднородности течения, наличие участков с различными электрохимическими свойствами и т.п. Эти зоны имеют способность самоподдерживаться и развиваться. В них накапливаются продукты электрохимических реакций, формируя осадки различной плотности. Проводимость этих зон выше, чем в потоке, поэтому значительная часть тока расходуется на разогрев воды в застойных зонах и локальный синтез продуктов электролиза, но не электрохимическое преобразование протекающей воды. Признаком существования застойных зон или областей замедленного течения является снижение тока при увеличении скорости течения воды.

Ширина электродных камер подобрана таким образом, чтобы соответствовать диаметру обращения части воды в микротороидальных потоках. Это препятствует появлению областей замедленного течения даже при малых объемных расходах. Ширина электродных камер удовлетворяет также двум другим требованиям: расстояние между поверхностью электрода и диафрагмой не должно быть большим, чтобы не увеличивать омическое сопротивление между электродами, однако, оно не должно быть слишком малым, чтобы не вызывать капиллярных и расклинивающих эффектов, препятствующих свободному течению воды с газовыми пузырьками. Длина электродных камер также определена с учетом реальных условий работы реактора.

Электродные камеры не должны быть слишком длинными, чтобы резко не возрастало газонаполнение воды по мере ее приближения к выходу из элемента, но их длина должна обеспечивать достаточную степень электрохимического преобразования воды при однократном протоке. Типичным признаком повышения газонаполнения является увеличение силы тока при возрастании скорости течения воды. Указанное сочетание размеров ширины и длины электродных камер позволяет добиваться хорошего контакта с электродом всех микрообъемов воды. Пузырьки газов не затрудняют свободное течение воды в электродных камерах при конвективных режимах циркуляции, не создают застойных зон за счет капиллярного расклинивания, не увеличивают электрическое сопротивление в межэлектродном пространстве, т.е. в электродной камере не происходит их коалесценция, а значительная скорость удаления обеспечивает малое газонасыщение воды. Весь объем воды в камере находится под действием электрического поля значительной неоднородности, что порождает возникновение микроциркуляционных упорядоченных потоков с ускоренным массообменом в зоне двойного электрического слоя на поверхности электрода, где напряженность электрического поля достигает нескольких миллионов вольт на сантиметр.

Недостатком этого решения являются высокие энергозатраты. Снижение энергозатрат по предложенному решению достигается за счет определенных соотношений размеров электролитической ячейки. Как показывают эксперименты, при соблюдении данных соотношений, указанных в формуле, при прочих равных условиях удельный расход энергии при обработке водопроводной воды составляет от 0,75 до 1,25 кВтч/м3, в то время как при несоблюдении этих соотношений расход энергии составляет около 3,0 кВтч/м3, как и в известном решении. При этом достигается и такой дополнительный эффект за счет остальных конструктивных решений, как улучшение гидравлического режима, оптимизация процесса за счет использования предлагаемой диафрагмы, а также снабжения устройства узлами, которые обеспечивают как улучшение гидродинамики устройства, так и повышение качества обработанной воды за счет разрушения соединений активного хлора.

Диафрагма элемента выполняется из керамики на основе оксида циркония с добавлением оксидов алюминия и иттрия. Благодаря этому диафрагма обладает высокой устойчивостью к действию концентрированных и разбавленных водных растворов кислот, щелочей, окислителей, восстановителей, агрессивных газов: хлора, озона, и имеет срок службы, превышающий ресурс элемента (более 10000 ч).

Диафрагма является ультрафильтрационной и имеет протекаемость в пределах 0,5-2,0 мл/м чПа.

Диафрагма, установленная между электродами с открытым (без сепаратора) зазором для протока воды, не изменяющая размеров и формы при перепадах давления, гидрофильная, с низким электрическим и высоким фильтрационным сопротивлением (за счет большого числа мелких открытых пор), тонкая, позволяет эффективно реализовать основные условия электрохимической (катодной и анодной) обработки воды, обеспечивающей наивысшую степень ее метастабильности. При такой обработке все продукты электрохимических реакций, включая высокозаряженные метастабильные частицы, полностью поступают в протекающую пресную воду и насыщают ее, равномерно распределяясь в объеме. Эти частицы так же как стабильные ионы, участвуют в переносе заряда, но достигая гидрофильной диафрагмы, адсорбируются на ее поверхности. Они почти не проникают вглубь, так как энергия взаимодействия с гидрофильной поверхностью материала диафрагмы выше энергии активации электромиграционного переноса и поэтому не подвергаются взаимной нейтрализации. Образуются два заряженных слоя на поверхности диафрагмы, разность потенциалов между которыми достигает 2,5 В. За счет заряженных поверхностных ионных слоев напряженность электрического поля в диафрагме увеличивается на 30-40 В/см, что способствует повышению подвижности ионов в порах и снижает электрическое сопротивление. Снижению электрического сопротивления в межэлектродном пространстве способствует также появление самоорганизующихся дисситивных структур течения, обеспечивающих ускоренный транспорт заряженных частиц в электродной камере. Такие структуры возникают в соответствии с единой теорией фундаментального поля И.Л. Горловина в пространственно разделенных областях потери и захвата электрона при соответствии характеристических размеров системы (ширина и диаметр электродных камер, толщины диафрагмы) и параметров ее работы (минерализация воды, градиент концентраций, скоростей течения), величины подводимой энергии.

Гидрофильная керамическая диафрагма, кроме указанных, имеет еще несколько положительных свойств. Диаграмма нечувствительна к загрязнению воды органическими веществами, катионами тяжелых металлов. Легко и многократно может быть очищена от катодных отложений промывкой кислотой. Это дает электрохимическому реактору возможность долго и стабильно работать при минимальном количестве корректировок режима и операций технического обслуживания, которые не связаны с ее разбором, и так как диафрагма является жесткой, то облегчается ее установка и демонтаж, а также обеспечивается возможность ее работы при изменяющемся давлении.

Выполнение стержневого электрода переменного сечения таким образом, что диаметр его концевых частей составляет 0,75 диаметра его средней части, и размещение его в сборке таким образом, что средняя его часть, имеющая больший диаметр, находится между уровнями, ограниченными отверстиями в цилиндрическом электроде, позволяет снизить износ электрода, так как в местах выполнения отверстий изменяется конфигурация электрического поля между электродами, что может привести к созданию локальных повышений напряжения и неравномерному износу электродов. Также увеличение межэлектродного расстояния в этом месте позволяет обеспечить стабильность работы диафрагмы. Кроме того, снижается материалоемкость электрода. Выполнение диаметра концевых частей стержневого электрода меньше чем 0,75 диаметра его средней части нецелесообразно, так как приводит к образованию застойных зон. Выполнение их больше 0,75 не обеспечивает заданную степень ресурса работы электрода.

Электроды реактора изготовлены из титана. В зависимости от условий эксплуатации, которые определяются назначением реактора, электроды подвергаются соответствующей модификации поверхности. Наиболее типичные материалы электродных покрытий, используемых в данных реакторах, приведены в таблице.

Платиновые и платиново-иридиевые покрытия являются стойкими как при анодной, так и при катодной поляризации, поэтому переключение ячейки с режима катодной обработки воды на анодную достигается изменением полярности электродов.

Если в качестве анодного покрытия используются диоксид рутения или диоксид марганца, то титановый катод полируют или наносят пирографитовое покрытие и полярность электродов во все время эксплуатации не изменяют. Переход с катодного режима на анодный в этом случае производят путем гидравлических переключений. Покрытие пирографитом и полировка титанового электрода снижают скорость образования отложений не только на поверхности электрода, но и на диафрагме.

Устройство работает следующим образом.

Обрабатываемая вода подается из напорного источника 1 в анодную камеру 4 проточного, работающего под повышенным давлением электрохимического реактора модульного типа с пористой ультрафильтрационной керамической диафрагмой 3 (фиг.1). Во время протока через анодную камеру происходит образование активного хлора из солей, которые составляют естественную минерализацию любой питьевой воды. Соединения активного хлора полностью уничтожают все микроорганизмы и окисляют органические примеси с образованием нетоксичных и неопасных для человека веществ. После выхода из анодной камеры, вода проходит через катализатор 6, на котором происходит разрушение активного хлора.

Катализатор выполнен из плотного углеродного материала, например, графита МПГ-6 с нанесенным на его поверхность тонким слоем (около 1 мкм) диоксида марганца. Скорость разрушения соединений активного хлора на таком катализаторе в 1,8 раз выше, чем на пиролюзите (MnO2).

Одновременно с анодной вода поступает в катодную камеру 5 электрохимического реактора, в котором происходит прямое электрохимическое и каталитическое восстановление органических примесей. Ионы тяжелых металлов превращаются в нейтральные атомы, которые становятся нетоксичными для организма человека и не вступают в биологические реакции окисления. В катодной камере установки происходит смещение окислительно-восстановительного потенциала до уровня, соответствующего внутренней среде организма человека. Регулятор 7 расхода воды ограничивает проток воды через катодную камеру. Проток воды через емкость с катализатором в направлении сверху вниз обеспечивает более равномерный контакт всех микрообъемов воды с поверхностью частиц катализатора, чем при любом другом направлении протока.

Все материалы, из которых выполнены элементы установки, соприкасающиеся с водой, разрешены к применению в медицинской практике.

В данной установке уничтожаются 99,9% всех микроорганизмов, содержащихся в воде в течение 1,0-1,5 с.

Установки имеют модульное исполнение, что позволяет легко получить любую необходимую производительность. Производительность установок 100, 500 и 1500 л/ч. Удельный расход энергии не более 0,2 кВт ч/1000 л. 


ФОРМУЛА ИЗОБРЕТЕНИЯ



УСТРОЙСТВО ДЛЯ ОБЕЗЗАРАЖИВАНИЯ И ОЧИСТКИ ВОДЫ, содержащее электрохимическую ячейку, выполненную из вертикальных коаксиальных цилиндрического и стержневого электродов, установленных в диэлектрических втулках, керамической диафрагмы, коаксиально установленной во втулках между электродами и разделяющей межэлектродное пространство на электродные камеры, линии подвода и отвода обрабатываемой воды, причем в нижней втулке выполнен канал для подвода воды в камеру стержневого электрода, соединенный с линией подачи воды, а в верхней втулке канал для отвода воды из камеры стержневого электрода, источник тока, соединенный с электродами через узел коммутации, отличающееся тем, что диафрагма выполнена ультрафильтрационной из керамики на основе оксида циркония с добавками оксидов алюминия и иттрия и установлена так, что геометрические размеры ячейки удовлетворяют соотношениям





где K межэлектродное расстояние, мм;

l длина рабочей части электродной камеры, мм;

DS внутренний диаметр цилиндрического электрода, мм;

DB диаметр средней части стержневого электрода, мм;

SS и SB площади поперечного сечения камер соответственно цилиндрического и стержневого электродов,м2,

в верхней и нижней частях цилиндрического электрода выполнены отверстия, нижнее из которых соединено с линией подачи воды, стержневой электрод выполнен переменного сечения и диаметр его концевых частей составляет 0,75 диаметра его средней части, причем стержневой электрод установлен так, что его средняя часть расположена на уровне, ограниченном отверстиями в верхней и нижней частях цилиндрического электрода, цилиндрический электрод соединен с положительным, а стержневой с отрицательным полюсами источника тока, устройство дополнительно содержит емкость с катализатором, снабженную входом в верхней и выходом в нижней частях емкости, и регулятор расхода воды, причем вход емкости с катализатором соединен с отверстием в верхней части цилиндрического электрода, а выход емкости с линией отвода обработанной воды, регулятор расхода установлен перед входом в камеру стержневого электрода.




ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал
Воздухо- и водоочистка. Опреснительные установки






СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "и" означает, что будут найдены только те страницы, где встречается каждое из ключевых слов. Например, при запросе "очистка воды" будет найдено словосочетание "очистка воды". При использовании режима "или" результатом поиска будут все страницы, где встречается хотя бы одно ключевое слово ("очистка" или "воды").

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+очистка -воды".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "сток" будут найдены слова "стоков", "стоки" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу "сток!".


Устройства и способы водоочистки | Опреснительные установки. Дистилляторы | Устройства и способы воздухоочистки


Рейтинг@Mail.ru