СПОСОБ ОСВЕТЛЕНИЯ ВОДЫ ПРИ ПРОМЫШЛЕННОЙ РАЗРАБОТКЕ РОССЫПНЫХ МЕСТОРОЖДЕНИЙ

СПОСОБ ОСВЕТЛЕНИЯ ВОДЫ ПРИ ПРОМЫШЛЕННОЙ РАЗРАБОТКЕ РОССЫПНЫХ МЕСТОРОЖДЕНИЙ


RU (11) 2197434 (13) C2

(51) 7 C02F1/46 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 20.11.2007 - действует 

--------------------------------------------------------------------------------

(21) Заявка: 2000129529/12 
(22) Дата подачи заявки: 2000.11.24 
(24) Дата начала отсчета срока действия патента: 2000.11.24 
(43) Дата публикации заявки: 2002.09.27 
(45) Опубликовано: 2003.01.27 
(56) Список документов, цитированных в отчете о поиске: ЛЕШКОВ В.Г. Разработка россыпных месторождений. - М.: Недра, 1977, с.61-63. SU 872461 А, 15.10.1981. SU 399463 А, 03.10.1973. SU 990662 A, 23.01.1983. US 4732661 A, 22.03.1988. 
(71) Заявитель(и): Пермский государственный технический университет 
(72) Автор(ы): Мараков В.В.; Белкин В.В.; Боровинский Б.А.; Ананьев А.А.; Оверин Б.А.; Громов Ю.А. 
(73) Патентообладатель(и): Пермский государственный технический университет 
Адрес для переписки: 614600, г.Пермь, Комсомольский пр., 29а, Пермский государственный технический университет, патентно- информационный отдел 

(54) СПОСОБ ОСВЕТЛЕНИЯ ВОДЫ ПРИ ПРОМЫШЛЕННОЙ РАЗРАБОТКЕ РОССЫПНЫХ МЕСТОРОЖДЕНИЙ 

Изобретение относится к области очистки воды и может быть использовано при промывке песков пресной водой в процессе промышленной разработки россыпных месторождений алмазов и золота. В устье отводного канала создают дополнительную плотину для обеспечения потока сточных вод со средней скоростью 0,05-0,1 м/с. В водоотводном канале устанавливают проточные электролизеры со взаимно параллельными пластинчатыми электродами длиной 1-2 м. Процесс ведут при напряженности постоянного электрического поля в межэлектродном пространстве 2-2,5 кВ/м, создаваемого источником постоянного тока напряжением 220-300 В. Технический эффект - снижение электрического потенциала двойного слоя взвешенных глинистых частиц без загрязнения воды химическими веществами. 1 ил. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к области очистки воды и может быть использовано при промывке песков пресной водой в процессе промышленной разработки россыпных месторождений алмазов и золота.

Известен способ осветления природных вод от гидрофобных примесей, включающий введение в воду растворов кислот или щелочей. Это приводит к нарушению агрегатной устойчивости и частичной коагуляции гидрофобных примесей (1).

Причины, препятствующие получению требуемого технического результата, заключаются в том, что данным способом получить необходимую степень очистки от взвешенных частиц невозможно ввиду того, что в равновесном состоянии процесс адсорбции катионов введенных растворов двойным электрическим слоем взвешенных частиц сопровождается их десорбцией, потенциал частиц не изменяется и, в конечном итоге, коагуляция частиц не происходит. Кроме того, в воде происходит накопление ионов, что приводит к химическому загрязнению воды.

Наиболее близким к предлагаемому является способ очистки воды, включающий создание в воде постоянного электрического поля, электрохимическое растворение алюминиевых и железных анодов с последующим электролитическим коагулированием взвешенных частиц (2).

Причины, препятствующие получению требуемого технического результата, заключаются в том, что образование электролитов в результате растворения электродов приводит к превышению в осветленной речной воде предельно допустимой концентрации катионов и анионов, т.е. к химическому загрязнению рек и водоемов, и наносит значительный ущерб биологической среде, флоре и фауне. Недостатком способа является также низкая удельная производительность.

Задача, на решение которой направлено заявляемое изобретение, - осветление промышленной сточной воды. Технический результат, который может быть получен при осуществлении изобретения, заключается в снижении электрического потенциала двойного слоя взвешенных глинистых частиц без загрязнения воды химическими веществами.

Поставленная задача решается за счет того, что в известном способе осветления воды при промышленной разработке россыпных месторождений полезных ископаемых, заключающемся в создании в воде электрического поля, в устье отводного канала создают дополнительную плотину для обеспечения потока сточных вод со средней скоростью 0,05-0,1 м/с, в водоотводном канале устанавливают проточные электролизеры со взаимно параллельными пластинчатыми электродами длиной 1-2 м и процесс ведут при напряженности постоянного электрического поля в межэлектродном пространстве 2-2,5 кВ/м, создаваемого источником постоянного тока напряжением 220-300 В.

Способ осуществляют следующим образом (см. чертеж). Драга 1 разрабатывает пласт песков 2 до плотика 3. За счет естественного поверхностного источника 4 осуществляется приток воды в дражный разрез. Водохранилище 5 создают путем строительства дополнительной временной плотины 6. Сброс избыточного количества воды производят через водоотводный канал 7, в котором устанавливают проточные электролизеры со взаимно параллельными пластинчатыми электродами 8. Межэлектродное расстояние выполняют равным 2-3 см при средней скорости воды не более 0,05-0,1 м/с. Длина электродов при заданной средней скорости потока составляет 1-2 м. Высота электродов выбирается из условия, что среднегодовой расход стоков составляет 1,5-3,0 м3/с. Электроды изолированы друг от друга изоляционными втулками. Напряжение источника питания составляет 220-300 В. На электроды накладывают такое постоянное электрическое поле, чтобы напряженность в зоне обработки воды была не менее 2-2,5 кВ/м. Значение напряженности постоянного электрического поля должно быть достаточно для сообщения ионам ОН- скорости, необходимой для прохождения межэлектродного пространства за время, равное времени нахождения потока в проточной установке, достаточное для завершения коагуляции взвешенных частиц. Вода, проходя между электродами 8, подвергается кратковременному электролизу, в результате которого в воде появляются ионы Н+ и ОН-. При заданной напряженности поля в воде в межэлектродном пространстве создается поток ионов ОН-, которые нейтрализуют дзета-потенциал взвешенных глинистых частиц и обеспечивают их коагуляцию в потоке воды. Ионы ОН-, не участвующие в процессе нейтрализации дзета-потенциала частиц, восстанавливаются с образованием молекул воды и кислорода.

Пример конкретного осуществления способа.

В водоотводном канале после драги на реке Колчим (Пермская область) устанавливали семь проточных электролизеров. Каждый электролизер состоял из 10 электродов. Исходя из скорости потока сточных вод, равной 0,1 м/с, необходимая длина электродов (L) составила 2,0 м. Высота электродов составляла 0,7 м, межэлектродное расстояние - 3 см. После подачи на электроды проточных электролизеров напряжения от источника постоянного тока (220 В) и создания регулярного гидродинамического режима потока взвешенные частицы коагулировали в отстойнике, сооруженном через 0,5 км ниже по течению реки. При этом напряженность электрического поля в межэлектродном пространстве составила 2 кВ/м.

Источники информации

1. Николадзе Г.И., Минц Д.М., Кастальский А.А. Подготовка воды для питьевого и промышленного водоснабжения. М., Высшая школа, 1984, с. 54-69.

2. Лешков В.Г. Разработка россыпных месторождений. - М., "Недра", 1977 г., с. 62). 


ФОРМУЛА ИЗОБРЕТЕНИЯ



Способ осветления воды при промышленной разработке россыпных месторождений полезных ископаемых путем создания в воде электрического поля, отличающийся тем, что в устье отводного канала создают дополнительную плотину для обеспечения потока сточных вод со средней скоростью 0,05-0,1 м/с, в водоотводном канале устанавливают проточные электролизеры со взаимно параллельными пластинчатыми электродами длиной 1-2 м и процесс ведут при напряженности постоянного электрического поля в межэлектродном пространстве 2-2,5 кВ/м, создаваемого источником постоянного тока напряжением 220-300 В.