СПОСОБ ОЧИСТКИ ВОДНЫХ РАДИОАКТИВНЫХ РАСТВОРОВ ОТ РАДИОНУКЛИДОВ

СПОСОБ ОЧИСТКИ ВОДНЫХ РАДИОАКТИВНЫХ РАСТВОРОВ ОТ РАДИОНУКЛИДОВ


RU (11) 2200994 (13) C2

(51) 7 G21F9/12 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 26.12.2007 - действует 

--------------------------------------------------------------------------------

(21) Заявка: 2001113209/06 
(22) Дата подачи заявки: 2001.05.14 
(24) Дата начала отсчета срока действия патента: 2001.05.14 
(45) Опубликовано: 2003.03.20 
(56) Список документов, цитированных в отчете о поиске: RU 2090944 C1, 20.09.1997. RU 2065629 C1, 20.08.1996. US 4622176 A, 11.11.1986. EP 0530118 A2, 03.03.1993. СОБОЛЕВ И.А., ХОМЧИК Л.Н. Обезвреживание радиоактивных отходов на централизованных пунктах. - М.: ЭНЕРГОАТОМИЗДАТ, 1983, кл. 5. 
(71) Заявитель(и): Институт химии и технологии редких элементов и минерального сырья им. И.В.Тананаева Кольского научного центра РАН 
(72) Автор(ы): Иваненко В.И.; Локшин Э.П.; Авсарагов Х.Б.; Калинников В.Т.; Пантелеев В.Н.; Васильева Н.Я. 
(73) Патентообладатель(и): Институт химии и технологии редких элементов и минерального сырья им. И.В.Тананаева Кольского научного центра РАН 
Адрес для переписки: 184209, Мурманская обл., г. Апатиты, ул. Ферсмана, 14, КНЦ РАН, ИХТРЭМС, Патентный отдел 

(54) СПОСОБ ОЧИСТКИ ВОДНЫХ РАДИОАКТИВНЫХ РАСТВОРОВ ОТ РАДИОНУКЛИДОВ 

Изобретение относится к технологии очистки от радионуклидов жидких радиоактивных отходов. Сущность изобретения: проводят очистку водных радиоактивных растворов при значении рН не менее 4 сорбентом, в качестве которого используют порошкообразный аморфный фосфат титана с крупностью частиц не менее 10 мкм. Процесс дезактивации ведут стадийно в режиме противотока и с перемешиванием раствора и сорбента в течение времени, достаточного для обеспечения на каждой стадии очистки равновесного состояния между раствором и сорбентом. Число стадий N устанавливают исходя из требуемой степени очистки от радионуклидов по гамма- и бета-активности, согласно соотношению N= (lnCисх-lnCкон)/(lnКd+ln), где Cисх - гамма- или бета-активность радионуклидов в исходном растворе; Скон - допустимая гамма- или бета-активность радионуклидов в конечном растворе; - массовое отношение сорбента и раствора на каждой стадии; d - коэффициент распределения радионуклидов по гамма- или бета-активности. Сорбент, содержащий радионуклиды, отделяют фильтрацией или центрифугированием и осуществляют его захоронение. Преимущества изобретения заключаются в обеспечении высокоэффективной очистки жидких радиоактивных отходов. 7 з.п. ф-лы, 1 табл. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к технологии очистки от радионуклидов водных радиоактивных растворов, в частности жидких радиоактивных отходов (ЖРО) ядерных энергетических установок и других технологических растворов, имеющих высокий солевой фон и содержащих примеси в виде минеральных масел и твердых взвесей.

При очистке ЖРО, содержащих высокие (более 1 г/л) концентрации катионов натрия, калия, кальция и др., а также примеси в виде минеральных масел и твердых взвесей, возникает проблема эффективного извлечения радионуклидов по причине отсутствия универсального сорбента, позволяющего извлекать из раствора радионуклиды на фоне других конкурирующих катионов, а также в связи с необходимостью проведения специальной стадии предочистки ЖРО от взвесей, нефтепродуктов и т.п.

Известен способ очистки водных радиоактивных растворов от радионуклидов, в частности ЖРО, содержащих радионуклиды цезия и стронция (см. патент РФ 2112289, МПК 6 G 21 F 9/04, В 01 J 20/02, С 02 F 9/00, 1998), согласно которому раствор ЖРО подают на стадию предочистки, включающую блоки механической очистки, ультрафильтрационный и микрофильтрационный блок, затем пропускают через селективный неорганический сорбент на основе ферроцианидов переходных металлов меди, никеля, кобальта и пористого неорганического носителя, после чего проводят обработку ЖРО в обратноосмотическом модуле в одну стадию при содержании солей менее 1 г/л и в две стадии при содержании солей более 1 г/л с разделением потоков на концентрат и пермеат, подвергаемый доочистке путем пропускания через сорбент, выбранный из ряда: синтетический цеолит "А", ионообменные смолы, шабазит гексагональной структуры, природный цеолит моноклинной структуры.

Недостатками известного способа являются непригодность его для очистки ЖРО с высоким солевым фоном, сложность и многостадийность, использование целого ряда селективных сорбентов, необходимость проведения специальной стадии предочистки ЖРО от взвесей и нефтепродуктов, а также сосредоточение радионуклидов в жидком концентрате, объем которого составляет около 25% от объема исходного раствора ЖРО и требует дальнейшей переработки.

Известен также способ очистки водных радиоактивных растворов от радионуклидов, в частности воды высокого уровня активности (см. патент РФ 2090944, МПК 6 G 21 F 9/12, 1997), включающий фильтрацию радиоактивного раствора при регулировании рН через комбинированную гранулированную загрузку из неорганических сорбентов, в качестве которых используют катионообменные фосфат циркония и/или фосфат титана в водородной и солевой формах, а объемное соотношение водородной и солевой форм катионообменных сорбентов в комбинированной загрузке составляет 1: 2-2: 1, отделение сорбента с поглощенными им радионуклидами от раствора и захоронение сорбента. Водородную и солевую формы сорбента в комбинированной загрузке располагают слоями, при этом первый по ходу очищаемой воды слой содержит сорбент в водородной форме, а второй слой содержит сорбент в солевой форме. Комбинированная загрузка может состоять и из смеси сорбентов в водородной и солевой формах. В качестве солевой формы используют литиевую, натриевую или калиевую формы. Для уменьшения гидравлического сопротивления слоя сорбентов используют сферогранулированный сорбент, получаемый золь-гель методом. Очистку воды по известному способу ведут в режиме рециркуляции, так как за одну стадию фильтрования требуемая степень очистки не может быть достигнута.

Недостатками этого способа являются непригодность его для очистки ЖРО с высоким (более 1 г/л) солевым фоном, необходимость проведения предварительной специальной очистки ЖРО от взвесей и нефтепродуктов, так как в противном случае эти загрязнения обволакивают гранулы сорбентов и препятствуют диффузии радионуклидов из очищаемого раствора ЖРО в сорбент. К недостаткам способа можно отнести использование двух типов сорбентов - в водородной и солевой формах, а также то, что их применяют в гранулированном виде, имеющем ограниченную поверхность контакта. Использование сорбентов в гранулированном виде, кроме того, снижает полноту их использования и требует увеличения времени контакта сорбента и раствора ЖРО, поскольку диффузия радионуклидов внутрь гранулы сорбента, имеющей относительно большие размеры, затруднена.

Настоящее изобретение направлено на решение задачи высокоэффективной очистки от радионуклидов ЖРО с высоким солевым фоном, содержащих дополнительно примеси в виде минеральных масел и твердых взвесей.

Поставленная задача решается тем, что в способе очистки водных радиоактивных растворов от радионуклидов, включающем взаимодействие сорбента в виде фосфата титана в водородной форме с исходным радиоактивным раствором при регулировании рН раствора, отделение сорбента с поглощенными им радионуклидами от раствора и последующее захоронение насыщенного радионуклидами сорбента, согласно изобретению фосфат титана используют в порошкообразном состоянии, взаимодействие раствора и сорбента осуществляют стадийно в течение времени, достаточного для обеспечения на каждой стадии очистки равновесного состояния между раствором и сорбентом, при этом взаимодействие раствора и сорбента ведут при перемешивании, а число стадий N устанавливают исходя из требуемой степени очистки от радионуклидов по гамма- и бета-активности, согласно соотношению:

N=(lnСисх-lnСкон)/(lnKd+ln),

где Сисх - гамма- или бета-активность радионуклидов в исходном растворе; Скон - допустимая гамма- или бета-активность радионуклидов в конечном растворе; - массовое отношение сорбента и раствора на каждой стадии; d - коэффициент распределения радионуклидов по гамма- или бета-активности.

Поставленная задача решается также тем, что очистке подвергают водные радиоактивные растворы с повышенным содержанием минеральных солей, имеющие примеси минеральных масел и твердые взвеси.

Решение поставленной задачи достигается тем, что используют сорбент состава ТiO(ОН)2-2х(НРO4)хnН2О, где х=0,3-1,0, с крупностью частиц менее 10 мкм.

На решение поставленной задачи направлено также то, что время взаимодействия раствора и сорбента на каждой стадии составляет не менее 15 мин.

Решение поставленной задачи достигается тем, что величину рН раствора поддерживают не менее 4 путем введения в раствор щелочного компонента, преимущественно соды.

Поставленная задача решается и тем, что взаимодействие сорбента и раствора осуществляют в противотоке, а разделение раствора и сорбента проводят фильтрацией или центрифугированием.

На решение поставленной задачи направлено то, что конечный раствор обрабатывают гелем гидроксида титана.

Сущность изобретения заключается в том, что проводят очистку водных радиоактивных растворов с повышенным содержанием минеральных солей при значении рН не менее 4 порошкообразным аморфным фосфатом титана состава ТiO(ОН)2-2х(НРO4)хnН2О, где х= 0,3-1,0, с крупностью частиц менее 10 мкм. Сорбент представляет собой гидрофосфат титанила TiO(HPO4) или его модификации, в которых часть НРO4-групп заменена на ОН-группы, и обладает высокой удельной поверхностью сорбции, что наиболее полно реализует его способность к эффективному захвату радионуклидов из раствора. Процесс дезактивации ведут в статических условиях при перемешивании раствора и сорбента в течение времени, достаточного для обеспечения на каждой стадии очистки равновесного состояния между раствором и сорбентом (не менее 15 мин), с последующим отделением сорбента, содержащего радионуклиды, известными техническими приемами, в частности фильтрацией или центрифугированием. Присутствующие в исходном растворе механические взвеси не могут обволакивать частицы сорбента и отделяются от очищаемого раствора ЖРО одновременно с сорбентом. При этом из раствора удаляются и минеральные масла. Для наиболее эффективного использования сорбента проводят стадийную очистку ЖРО от гамма- и бета-активности в режиме противотока очищаемого раствора и сорбента, где число стадий N устанавливают согласно соотношению:

N=(lnСисх-lnСкон)/(lnKd+ln). (1)

Обработка раствора фосфатом титана или его модификациями при рН менее 4 резко снижает эффективность сорбции, уменьшает коэффициенты распределения радионуклидов, так как +-ионы составляют конкуренцию при катионном замещении в твердой фазе. Обработка в режиме противотока при значениях рН не менее 4 и числе стадий обработки, определяемом согласно соотношению (1), обеспечивает наиболее полный захват радионуклидов по гамма- и бета-активности в твердую фазу и исключает образование растворимых твердых осадков. При очистке ЖРО с высоким солевым фоном происходит замещение катионами металлов протонов сорбента и переход последних в раствор, что в значительной степени снижает рН раствора. Поэтому в процессе сорбции возникает необходимость корректирования величины рН. Корректирование осуществляют введением щелочного компонента. Наиболее дешевым и удобным является использование соды, не меняющей, как правило, солевой состав очищаемого раствора. Для очистки от фосфат-ионов дезактивированного раствора последний обрабатывают гелем гидроксида титана.

Перед захоронением отработанного сорбента целесообразна его термическая обработка, которая обеспечивает жесткую фиксацию сорбированных катионов, не переходящих в дальнейшем как в слабокислые, так и слабощелочные растворы, что создает гарантии надежного захоронения радиоактивных отходов после стеклования, битумирования или бетонирования.

Сущность и преимущества заявляемого изобретения могут быть проиллюстрированы следующими примерами.

Во всех примерах число стадий определяют исходя из требуемой степени очистки от радионуклидов по гамма- и бета-активности, согласно соотношению N= (lnСисх-lnСкон)/(lnKd+ln), где Скон для гамма-активности принято равным 80 Бк/л, а Скон для бета-активности принято равным 35 Бк/л. При этом в качестве рабочего числа стадий выбирают число стадий, обеспечивающих требуемую степень очистки и по гамма- и по бета-активности, а несколько последовательных стадий объединяют в цикл. В режиме противотока (пример 6) процесс ведут с использованием в последующем цикле сорбента предыдущего цикла.

Пример 1.

Количество стадий очистки, рассчитанное по соотношению (1), равно 2. При этом для очищаемого раствора Сисх по гамма-активности составляет 45510 Бк/л, а Сисх по бета-активности составляет 11380 Бк/л. Массовое отношение сорбента и раствора =1:75, коэффициенты распределения Kd по гамма- и бета-активности принимают равными в среднем соответственно 1800 и 1300 см3/г.

Стадия 1. 46 мл исходного радиоактивного раствора с солевым фоном 8 г/л и рН=8 обрабатывают при перемешивании 0,613 г сорбента, представляющего собой аморфный порошкообразный материал с крупностью частиц менее 10 мкм и содержанием воды 46,7%. Сорбент по составу соответствует соединению ТiOНРO4nН2O (х=1). В процессе взаимодействия сорбента с радиоактивным раствором значение рН понижается до 5. Через 15 мин, после установления равновесного состояния между раствором и сорбентом, твердую фазу отделяют от раствора центрифугированием. Степень очистки раствора от радионуклидов составляет 96,03% по гамма-активности и 94,60% по бета-активности. Остаточная концентрация радионуклидов в растворе составляет 1807 Бк/л по гамма-активности и 615 Бк/л по бета-активности. Использованный сорбент направляют на захоронение.

Стадия 2. 40 мл раствора, полученного при центрифугировании на предыдущей стадии, обрабатывают при перемешивании 0,533 г сорбента, аналогичного используемому на стадии 1, в течение 15 мин. В процессе взаимодействия сорбента с радиоактивным раствором значение рН, равное 5, поддерживают введением в суспензию необходимого количества раствора карбоната натрия. Затем твердую фазу отделяют от раствора центрифугированием. Степень очистки раствора от радионуклидов составляет 99,84% по гамма-активности и 99,68% по бета-активности. Остаточная концентрация радионуклидов в растворе составляет 73 Бк/л по гамма-активности и 34 Бк/л по бета-активности. Очищенный раствор сливают. Использованный сорбент направляют на захоронение.

Основные параметры способа очистки и полученные результаты по данному примеру и примерам 2-8 сведены в таблицу.

Пример 2.

Проводят очистку радиоактивного раствора согласно условиям примера 1, за исключением того, что очищаемый раствор дополнительно содержит 0,5 г/л твердых взвесей - продуктов коррозии металлов. Степень очистки раствора от радионуклидов составляет 99,84% по гамма-активности и 99,70% по бета-активности. Остаточная концентрация радионуклидов в растворе составляет 74 Бк/л по гамма-активности и 33 Бк/л по бета-активности.

Пример 3.

Проводят очистку радиоактивного раствора по условиям примера 2, за исключением того, что в исходный раствор предварительно вводят 0,04 мас.% нефтепродуктов. Степень очистки раствора от радионуклидов составляет 99,84% по гамма-активности и 99,70% по бета-активности. Остаточная концентрация радионуклидов в растворе составляет 72 Бк/л по гамма-активности и 34 Бк/л по бета-активности. Концентрация нефтепродуктов в очищенном растворе составляет менее 0,1 мг/л, что значительно ниже нормы, установленной для рыбохозяйственных водоемов.

Пример 4.

Проводят очистку радиоактивного раствора по условиям примера 2, за исключением того, что в качестве сорбента используют фосфат титана состава ТiO(ОН)0,88(НРO4)0,56nН2О, (х= 0,56). Степень очистки раствора от радионуклидов составляет 99,84% по гамма-активности и 99,69% по бета-активности. Остаточная концентрация радионуклидов в растворе составляет 73 Бк/л по гамма-активности и 35 Бк/л по бета-активности.

Пример 5.

Проводят очистку радиоактивного раствора согласно условиям примера 2, за исключением того, что в качестве сорбента используют фосфат титана состава TiO(OH)1,4(HPO4)0,3nН2О, (х=0.30). При определении количества стадий очистки значение коэффициента распределения Кd по гамма- и бета-активности принимают равными в среднем соответственно 1800 и 1400 см3/г. Степень очистки раствора от радионуклидов составляет 99,83% по гамма-активности и 99,73% по бета-активности. Остаточная концентрация радионуклидов в растворе составляет 77 Бк/л по гамма-активности и 31 Бк/л по бета-активности.

Пример 6.

Количество стадий очистки, рассчитанное по соотношению (1), равно 4. При этом для очищаемого раствора Сисх по гамма-активности составляет 164600 Бк/л, а Сисх по бета-активности составляет 41150 Бк/л. Массовое отношение сорбента и раствора =1:40, коэффициенты распределения Кd по гамма- и бета-активности принимают равными в среднем соответственно 260 и 230 см3/г. Для более эффективного использования сорбента применен режим противотока с числом циклов очистки, равным 2.

Цикл 1.

Стадия 1. 47 мл исходного радиоактивного раствора с содержанием солей 33 г/л и рН=8 обрабатывают при перемешивании в течение 15 мин 1,175 г сорбента, аналогичного используемому в примере 1. В процессе взаимодействия сорбента с радиоактивным раствором значение рН понижается до 6. Затем твердую фазу отделяют от раствора фильтрацией. Степень очистки раствора от радионуклидов составляет 87,77% по гамма-активности и 87,54% по бета-активности. Остаточная концентрация радионуклидов в растворе составляет 20131 Бк/л по гамма-активности и 5127 Бк/л по бета-активности. Использованный сорбент направляют на захоронение.

Стадия 2. 41 мл фильтрата, полученного на стадии 1, обрабатывают при перемешивании в течение 15 мин 1,012 г сорбента, аналогичного используемому на стадии 1. В процессе взаимодействия сорбента с радиоактивным раствором значение рН, равное 5, поддерживают введением в суспензию необходимого количества раствора гидроксида натрия. Затем твердую фазу отделяют от раствора фильтрацией. Степень очистки раствора от радионуклидов соответствует 98,44% по гамма-активности и 98,34% по бета-активности. Остаточная концентрация радионуклидов в растворе составляет 2568 Бк/л по гамма-активности и 683 Бк/л по бета-активности. Использованный сорбент направляют на захоронение.

Стадия 3. 36 мл фильтрата, полученного на стадии 2, обрабатывают при перемешивании в течение 15 мин 0,90 г сорбента, аналогичного используемому на предыдущих стадиях. В процессе взаимодействия сорбента с радиоактивным раствором значение рН, равное 6, поддерживают введением в суспензию необходимого количества раствора гидроксида натрия. Затем твердую фазу отделяют от раствора фильтрацией. Степень очистки раствора от радионуклидов составляет 99,78% по гамма-активности и 99,74% по бета-активности. Остаточная концентрация радионуклидов в растворе составляет 362 Бк/л по гамма-активности и 107 Бк/л по бета-активности. Отделенный от раствора сорбент используют при дальнейшей очистке новой порции раствора в цикле 2 на стадии 1.

Стадия 4. 30 мл фильтрата, полученного на стадии 3, обрабатывают при перемешивании в течение 15 мин 0,75 г сорбента, аналогичного используемому на предыдущих стадиях. В процессе взаимодействия сорбента с радиоактивным раствором значение рН, равное 5, поддерживают введением в суспензию необходимого количества раствора гидроксида натрия. Затем твердую фазу отделяют от раствора фильтрацией. Степень очистки раствора от радионуклидов составляет 99,97% по гамма-активности и 99,95% по бета-активности. Остаточная концентрация радионуклидов в растворе составляет 51 Бк/л по гамма-активности и 21 Бк/л по бета-активности. Очищенный раствор сливают. Отделенный от раствора сорбент используют при дальнейшей очистке новой порции раствора в цикле 2 на стадии 2.

Цикл 2.

Стадия 1. 30 мл новой порции исходного радиоактивного раствора обрабатывают при перемешивании в течение 15 мин 0,789 г сорбента после использования его на стадии 3 в цикле 1. В процессе взаимодействия сорбента с радиоактивным раствором значение рН понижается до 7. Затем твердую фазу отделяют от раствора фильтрацией. Степень очистки раствора от радионуклидов составляет 84,36% по гамма-активности и 84,98% по бета-активности. Остаточная концентрация радионуклидов в растворе составляет 25743 Бк/л по гамма-активности и 6181 Бк/л по бета-активности. Отделенный от раствора сорбент направляют на захоронение.

Стадия 2. 25 мл фильтрата, полученного на стадии 1 цикла 2, обрабатывают при перемешивании в течение 15 мин 0,64 г сорбента после использования его на стадии 4 в цикле 1. В процессе взаимодействия сорбента с радиоактивным раствором значение рН, равное 5, поддерживают введением в суспензию необходимого количества раствора гидроксида натрия. Затем твердую фазу отделяют от раствора фильтрацией. Степень очистки раствора от радионуклидов составляет 97,65% по гамма-активности и 97,73% по бета-активности. Остаточная концентрация радионуклидов в растворе составляет 3868 Бк/л по гамма-активности и 934 Бк/л по бета-активности. Отделенный от раствора сорбент направляют на захоронение.

Стадия 3. 20 мл фильтрата, полученного на стадии 2 цикла 2, обрабатывают 0,49 г сорбента, аналогичного используемому на стадиях 1-4 в цикле 1. В процессе взаимодействия сорбента с радиоактивным раствором значение рН, равное 5, поддерживают введением в суспензию необходимого количества раствора гидроксида натрия. Затем твердую фазу отделяют от раствора фильтрацией. Степень очистки раствора от радионуклидов составляет 99,69% по гамма-активности и 99,67% по бета-активности. Остаточная концентрация радионуклидов в растворе составляет 510 Бк/л по гамма-активности и 136 Бк/л по бета-активности. Отделенный от раствора сорбент может быть использован при дальнейшей очистке новой порции радиоактивного раствора.

Стадия 4. 15 мл фильтрата, полученного на стадии 3 цикла 2, обрабатывают при перемешивании в течение 15 мин 0,366 г исходного сорбента, аналогичного используемому на стадиях 1-4 цикла 1. В процессе взаимодействия сорбента с радиоактивным раствором значение рН, равное 4, поддерживают введением в суспензию необходимого количества раствора гидроксида натрия. Затем твердую фазу отделяют от раствора фильтрацией. Степень очистки раствора от радионуклидов составляет 99,97% по гамма-активности и 99,95% по бета-активности. Остаточная концентрация радионуклидов в растворе составляет 49 Бк/л по гамма-активности и 21 Бк/л по бета-активности. Очищенный раствор сливают. Отделенный от раствора сорбент может быть использован при дальнейшей очистке новой порции радиоактивного раствора.

Пример 7.

Проводят очистку радиоактивного раствора по условиям примера 2. Отличие заключается в том, что для извлечения фосфат-ионов 30 мл очищенного после стадии 2 раствора обрабатывают свежеосажденным гидроксидом титана массой 0,011 г в пересчете на ТiO2. Содержание фосфат-ионов в растворе до обработки свежеосажденным гидроксидом титана в пересчете на Р2O5 равно 12,6 мг/л, а после обработки раствора фосфат-ионов в нем не обнаружено. Степень очистки раствора от радионуклидов составляет 99,83% по гамма-активности и 99,68% по бета-активности. Остаточная концентрация радионуклидов в растворе составляет 77 Бк/л по гамма-активности и 34 Бк/л по бета-активности.

Пример 8.

Проводят очистку радиоактивного раствора по условиям цикла 1 примера 6 за исключением того, что рН суспензии не регулируют, Сисх по гамма-активности составляет 146400 Бк/л, а Сисх по бета-активности составляет 36600 Бк/л. Степень очистки раствора от радионуклидов составляет 99,74% по гамма-активности и 99,48% по бета-активности. Остаточная концентрация радионуклидов в растворе составляет 425 Бк/л по гамма-активности и 190 Бк/л по бета-активности. После стадии 4 необходима дальнейшая дезактивация раствора.

Из вышеприведенных примеров и таблицы следует, что заявленный способ по сравнению с прототипом обеспечивает высокоэффективную очистку жидких радиоактивных отход, содержащих высокий солевой фон, минеральные масла и твердые взвеси. Остаточная концентрация радионуклидов в очищенном растворе по гамма-активности не превышает 80 Бк/л, а по бета-активности - 35 Бк/л. Кроме того, преимуществами заявленного способа являются универсальность используемых материалов, так как в процессе очистки ЖРО происходит захват и гамма- и бета-активности, что не требует последовательной обработки технологических растворов несколькими специфическими сорбентами. Способ позволяет обеспечить надежную форму захоронения отработанного сорбента и характеризуется простотой аппаратурного оформления процесса. 


ФОРМУЛА ИЗОБРЕТЕНИЯ



1. Способ очистки водных радиоактивных растворов от радионуклидов, включающий взаимодействие сорбента в виде фосфата титана в водородной форме с исходным радиоактивным раствором при регулировании рН раствора, отделение сорбента с поглощенными им радионуклидами от раствора и захоронение сорбента, отличающийся тем, что фосфат титана используют в порошкообразном состоянии, взаимодействие раствора и сорбента осуществляют стадийно в течение времени, достаточного для обеспечения на каждой стадии очистки равновесного состояния между раствором и сорбентом, взаимодействие раствора и сорбента ведут при перемешивании, число стадий N устанавливают исходя из требуемой степени очистки от радионуклидов по гамма- и бета-активности, согласно соотношению N= (lnCисх-lnСкон)/(lnКd+ln), где Сисх - гамма- или бета-активность радионуклидов в исходном растворе; Скон - допустимая гамма- или бета-активность радионуклидов в конечном растворе; - массовое отношение сорбента и раствора на каждой стадии; d - коэффициент распределения радионуклидов по гамма- или бета-активности.

2. Способ по п. 1, отличающийся тем, что очистке подвергают водные радиоактивные растворы с повышенным содержанием минеральных солей, имеющие примеси минеральных масел и твердые взвеси.

3. Способ по п. 1 или 2, отличающийся тем, что используют сорбент состава TiO(OH)2-2x(HPO4)xnH2O, где х= 0,3-1,0, с крупностью частиц менее 10 мкм.

4. Способ по любому из пп. 1-3, отличающийся тем, что время взаимодействия раствора и сорбента на каждой стадии составляет не менее 15 мин.

5. Способ по любому из пп. 1-4, отличающийся тем, что величину рН раствора поддерживают не менее 4 путем введения в раствор щелочного компонента, преимущественно соды.

6. Способ по любому из пп. 1-5, отличающийся тем, что взаимодействие сорбента и раствора осуществляют в противотоке.

7. Способ по любому из пп. 1-6, отличающийся тем, что разделение раствора и сорбента осуществляют фильтрацией или центрифугированием.

8. Способ по любому из пп. 1-7, отличающийся тем, что конечный раствор обрабатывают гелем гидроксида титана.




ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал
Воздухо- и водоочистка. Опреснительные установки






СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "и" означает, что будут найдены только те страницы, где встречается каждое из ключевых слов. Например, при запросе "очистка воды" будет найдено словосочетание "очистка воды". При использовании режима "или" результатом поиска будут все страницы, где встречается хотя бы одно ключевое слово ("очистка" или "воды").

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+очистка -воды".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "сток" будут найдены слова "стоков", "стоки" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу "сток!".


Устройства и способы водоочистки | Опреснительные установки. Дистилляторы | Устройства и способы воздухоочистки


Рейтинг@Mail.ru