ПЛАВУЧИЙ ТУРБУЛИЗИРУЕМЫЙ МАТЕРИАЛ-НОСИТЕЛЬ ДЛЯ БИОТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

ПЛАВУЧИЙ ТУРБУЛИЗИРУЕМЫЙ МАТЕРИАЛ-НОСИТЕЛЬ ДЛЯ БИОТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ


RU (11) 2136611 (13) C1

(51) 6 C02F3/10, C02F3/08 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 26.12.2007 - действует 

--------------------------------------------------------------------------------

(21) Заявка: 96103625/25 
(22) Дата подачи заявки: 1994.12.15 
(31) Номер конвенционной заявки: G 9409077.7U 
(32) Дата подачи конвенционной заявки: 1994.06.03 
(33) Страна приоритета: DE 
(45) Опубликовано: 1999.09.10 
(56) Список документов, цитированных в отчете о поиске: WO 91/11396 А1, 08.08.91. DE 3928255 А1, 28.02.91. SU 912677 А, 15.03.82. SU 850607 А, 30.07.81. SU 1640126 А, 07.04.91. US 5217616 А, 08.06.93. 
(71) Заявитель(и): Петер Отт (DE); Фолькмар Пойкерт (DE); Райнхард Кох (DE); Райнер Аугст (DE) 
(72) Автор(ы): Петер Отт (DE); Фолькмар Пойкерт (DE); Райнхард Кох (DE); Райнер Аугст (DE) 
(73) Патентообладатель(и): Петер Отт (DE); Фолькмар Пойкерт (DE); Райнхард Кох (DE); Райнер Аугст (DE) 
(85) Дата соответствия ст.22/39 PCT: 03.03.96 
(86) Номер и дата международной или региональной заявки: DE 94/01505 (15.12.94) 
(87) Номер и дата международной или региональной публикации: WO 95/33695 (14.12.95) 
Адрес для переписки: 129010, Москва, ул.Б.Спасская 25, стр.3, "Городисский и Партнеры", Начальнику отдела патентному поверенному Кирюшиной Л.Н. 

(54) ПЛАВУЧИЙ ТУРБУЛИЗИРУЕМЫЙ МАТЕРИАЛ-НОСИТЕЛЬ ДЛЯ БИОТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ 

Изобретение относится к плавучему турбулизируемому материалу-носителю, обрастающему микроорганизмами, который может применяться в способах и установках для глубокой водоподготовки, обработки сточных вод и шлама и ферментационной техники. Результат изобретения - создание материала-носителя для микробиологических процессов, который обеспечивает возможность одновременной аэробной, а также анаэробно-неокислительной обработки воды. В аэробном вихревом слое часть поверхности носителя заселена микроорганизмами, сорбентами, энзимами, антигенами, живущими в анаэробно-неокислительной среде. Основной материал состоит из полимерных веществ полиолефинов или их сополимеров. Он содержит органические и/или неорганические добавки, имеет сердечник из пеноматериала с замкнутыми ячейками и мелкопористой структурой, поверхность структурирована и профилирована, частицы имеют форму полых цилиндров длиной от 3 до 25 мм, с наружным диаметром от 3 до 25 мм, внутренним диаметром от 2 до 24 мм и с удельным весом от 0,4 до 0,98 г/см3. Свойства носителя регулируются добавкой 0,1-2,0% вспенивающих веществ - бикарбонат с лимонной кислотой, крахмал, сахар и/или активированный уголь. 5 з.п.ф-лы. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к плавучему турбулизируемому материалу- носителю, обрастающему микроорганизмами, который может применяться в способах и установках для глубокой водоподготовки, обработки сточных вод и шлама и ферментационной техники.

Известно применение различных материалов-носителей в установках для обработки воды и сточных вод с целью повышения концентрации биомассы и, тем самым, производительности очистки.

В патенте ГДР DD 261921 A3 описан способ изготовления зернистого материала-носителя для биотехнологических процессов с удельным весом менее 0.5 г/см3, который получают термической усадкой пенополистироловых хлопьев. В патенте ГДР DD 264887 А1 этот материал дополнительно покрыт по своей поверхности адсорбентами и/или инертными наполнителями.

Материалы-носители, имеющие покрытие, описаны также, например, в патентах ФРГ DE 2945609 А1, DE 3006171 В1 и DE 3105887 C2.

Всем этим материалам присущ недостаток, заключающийся в том, что при их получении образуются частицы различной формы, разной величины и плотности, что приводит к различным свойствам плавучести, вследствие чего затрудняется надежное и управляемое осуществление способа при определенных условиях. Кроме того, микроорганизмы заселяются исключительно на поверхности материала-носителя. Благодаря этому могут получаться только микроорганизмы с аэробными и анаэробными требованиями к среде. В аэрируемом вихревом слое носители заселяются почти исключительно микроорганизмами, живущими в аэробных условиях. Не существует полостей, в которых вследствие недостатка кислорода протекают и анаэробно-неокислительные процессы, например, процессы денитрификации.

Известно также применение материалов-носителей в виде пенопластов. В патенте ФРГ DE 3137062 применяются тела из пенопластов с открытыми ячейками на основе полиуретана в кусковой форме. В патенте ГДР DD 269610 A1 описывается применение сжимаемых материалов-носителей с открытыми порами в аэротенках. В патенте ФРГ DE 3719418 С1 эти тела из пенопластов снабжены клейким слоем, а на или в открытые поры наносятся или вводятся адсорбционные частицы.

Эти материалы имеют преимущество, заключающееся в том, что микроорганизмы с различными требованиями к среде заселяются не только на наружных, но и на внутренних слоях, благодаря чему может достигаться более высокая производительность очистки за счет того, что процессы нитрификации и денитрификации протекают одновременно.

Однако на практике возникают проблемы, состоящие в том, что обрастающие гранулы пенопластов приобретают удельный вес от 0.9 до 1.1 г/см3. Вследствие этого становится невозможным их надежное удерживание в реакторах с помощью погружных стенок. Удерживание может осуществляться с помощью сит, сеток или перфорированных пластин. Это приводит к тому, что применение таких носителей возможно только в установках с хорошо функционирующей предварительной очисткой и что диаметр этих носителей должен составлять, по меньшей мере, 2 см. Любое же укрупнение означает ограничение удельной поверхности роста и одновременно повышенное использование объема реактора без эквивалентного повышения биоактивности. Другим недостатком носителей из пенопластов является забивание открытых пор увеличивающимся обрастанием и недостаточное проникновение очищаемой среды во внутренние слои.

Задачей изобретения является создание материала-носителя для микробиологических процессов, который обеспечивает возможность одновременной аэробной, а также анаэробно-неокислительной обработки воды. В аэробном вихревом слое часть поверхности должна заселяться также микроорганизмами, живущими в анаэробно-неокислительных условиях. Кроме того, материал должен изготавливаться в узком спектре определенных плотностей и размеров и иметь большую адсорбционно эффективную поверхность роста.

Задача изобретения решается материалом согласно пункту 1 формулы изобретения. Признаки, относящиеся к формам выполнения, описаны в подпунктах 2 - 6 формулы изобретения.

Основной полимерный материал из полиолефинов или их сополимеров, например, поливинилацетат, расплавляют и с добавкой органических и/или неорганических веществ в качестве вспенивающего агента формуют в экструдере с соплом специальной формы с получением цилиндрических полых заготовок определенных размеров. Благодаря этому получается сердечник из пеноматериала с закрытыми ячейками и мелкопористые ячеистые структуры. В качестве вспенивающего агента применяют 0.1 - 2.0%-ные бикарбонаты с лимонной кислотой и/или крахмал и/или сахар и/или активированный уголь. Внутренняя и/или наружная поверхность в зависимости от типа применяемого вспенивающего агента за счет вспучивания может выполняться пористой. Поверхность структурирована и профилирована. Плотность материала должна составлять от 0.4 до 0.98 г/см3. Вскоре после выхода из сопла еще не затвердевшая поверхность может покрываться сорбентами и/или энзимами и/или антигенами и/или другими биохимическими препаратами. Для повышения удельной поверхности роста применяемое сопло снабжено продольными канавками, благодаря чему на материале-носителе образуется рифленая поверхность. После отверждения полученный стержень разрезают на определенные длины.

Полученный материал-носитель является плавучим, хорошо турбулизируемым, а также механически и биологически очень стойким. Он имеет большую адсорбционно эффективную поверхность роста. Материал можно применять с большим преимуществом в биотехнологических процессах, в частности, в способах для глубокой обработки воды с удалением азота. В зависимости от потребности, носители могут использоваться в реакторах с кипящим или неподвижным слоем для аэробных, анаэробных или неокислительных способов. Удерживание в реакторах может без проблем реализоваться с помощью специально расположенных погружных стенок. Особенное преимущество получается за счет того, что в зависимости от длины частиц носителя внутри их могут создаваться поверхности роста, которые и в аэробном кипящем слое в обрастающем состоянии недостаточно снабжаются кислородом, и за счет этого там создаются анаэробно-неокислительные условия среды. За счет этого на частицах носителя в наиболее узком пространстве одновременно протекают аэробные и анаэробные неокислительные процессы. Отношение аэробных и анаэробно-неокислительных поверхностей роста может регулироваться по длине отдельных частиц носителя. Если наиболее предпочтительными являются аэробные процессы, например, нитрификация или аэробное разложение с биохимическим потреблением кислорода, то тогда носители, применяемые на этой стадии способа, имеют длину между 3 - 6 мм. Если носители удлиняются до 15 - 25 мм, тогда внутри селятся микроорганизмы, которые способны к денитрификации.

Материал-носитель, его изготовление и возможности его применения описываются ниже на примере установки для обработки сточных вод со значительным удалением азота путем нитрификации и денитрификации.

Поливинилацетат расплавляют и смешивают с 0.6% гранулята, содержащего 40% бикарбоната с лимонной кислотой в качестве вспенивающего агента. Эту смесь формуют в пруток в экструдере с соплом специальной формы с получением полого цилиндра с рифленой в продольном направлении поверхностью. Он имеет наружный диаметр, равный 5 мм, и внутренний диаметр, равный 4 мм. Рифления имеют глубину около 0.6 мм. Затем пруток после охлаждения в ванне с водой разрезают на отрезки длиной 5 мм. При этом получают на каждую частицу носителя поверхность роста свыше 2.7 см2 и на каждый м3 насыпного веса - поверхность свыше 950 м2.

Таким же образом изготавливают вторую партию с длиной носителя, равной 15 мм.

Вторую партию задают на ступень нитрификации, а первую партию - на ступень денитрификации установки для обработки сточных вод с удалением азота до соответственно 45%. Материал-носитель ступени нитрификации приводят в сильно псевдоожиженное состояние путем подвода сжатого воздуха, в то время как частицы носителя на ступени денитрификации с помощью медленно работающей мешалки постоянно находятся в контакте с обрабатываемой сточной водой. Всплывающий материал-носитель удерживается на соответствующей стадии способа погружными стенками, имеющими специальную форму.

Материал-носитель аэрируемой ступени нитрификации заселяется на наружных поверхностях, хорошо снабжаемых кислородом прежде всего микроорганизмами, живущими в аэробных условиях, в частности, нитрифицирующими бактериями. Сравнительно медленно растущие нитрификанты на этой ступени постоянно остаются с носителем и за счет этого обеспечивают за сравнительно короткий срок биохимическое превращение содержащегося в сточной воде аммония в нитрат. Из-за незначительной турбуленции средний участок внутри частиц, имеющих форму полого цилиндра, сильно обрастает самыми различными микроорганизмами. Снабжение кислородом в этой зоне ограничено. Здесь заселяются, преимущественно, такие бактерии, которые могут расти в анаэробной и неокислительной среде. Большинство из этих микроорганизмов в состоянии денитрифицировать нитрат, микробиологически полученный на аэрируемых поверхностях роста, с использованием растворимых соединений углерода в молекулярный азот. Следовательно, уже на ступени нитрификации часть азота удаляется.

Полное разложение нитрата происходит на следующей неаэрируемой ступени денитрификации. На ней частицы носителя вследствие анаэробно-неокислительных соотношений в среде заселяются, прежде всего, микроорганизмами, которые в состоянии использовать кислород, связанный в ион нитрата. Молекулярный азот выходит из установки в газообразной форме.

Благодаря применению материала-носителя согласно изобретению в установке для обработки сточных вод с удалением азота, объемная нагрузка, связанная с биохимическим потреблением кислорода, удваивается по сравнению с известными параметрами до 0.8 - 1.0 кг биохимически потребляемого кислорода /м3 без возникновения отрицательных воздействий на степень удаления. Этот эффект достигается за счет специфически более высокой концентрации биомассы в бассейне. Так, на каждый м3 насыпного объема замеряют до 5 кг биомассы в виде фиксируемого носителем сухого вещества. В промежутках между носителями могло получаться еще около 2.5 кг сухого вещества. За счет этого общее количество биомассы составляет приблизительно 7-8 кг сухого вещества. Такие концентрации не достигаются в обычных установках для обработки сточных вод. Устройство для последующего осветления, необходимое для отделения биомассы от очищенных сточных вод, может быть уменьшено на 35% вследствие высокой доли содержания фиксируемой носителем биомассы. Количество направляемой обратно биомассы может быть также снижено на 40% от подводимого количества сточных вод. При низких нагрузках притока удалось полностью отказаться от возврата биомассы. 


ФОРМУЛА ИЗОБРЕТЕНИЯ



1. Плавучий турбулизируемый материал-носитель для биотехнологических процессов со следующими признаками: основной материал состоит из полимерных веществ, содержит органические и/или неорганические добавки, он имеет стержень из пеноматериала с замкнутыми ячейками и мелкопористую структуру ячеек, поверхность структурирована и профилирована, имеет форму цилиндрических полых тел, длина от 3 до 25 мм, наружный диаметр от 3 до 25 мм, внутренний диаметр от 2 до 24 мм и плотность 0,4 - 0,98 г/см3.

2. Материал-носитель по п.1 со следующими признаками: поверхность покрыта сорбентами и/или энзимами, и/или антигенами, и/или другими биохимическими препаратами.

3. Материал-носитель по пп.1 и 2 со следующими признаками: полимерными веществами являются полиолефины или их сополимеры, например, поливинилацетат.

4. Материал-носитель по пп.1 - 3 со следующими признаками: насыпной вес, плотность и свойства плавучести могут регулироваться путем вспучивания посредством добавки химических и/или органических вспенивающих средств в количестве от 0,1 до 2,0%.

5. Материал-носитель по п. 4 со следующими признаками: вспенивающими средствами являются бикарбонаты с лимонной кислотой, и/или крахмал, и/или сахар, и/или активированный уголь.

6. Материал-носитель по пп.1 - 5 со следующими признаками: внутренняя и/или наружная поверхность является пористой и/или имеет продольные рифления.




ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал
Воздухо- и водоочистка. Опреснительные установки






СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "и" означает, что будут найдены только те страницы, где встречается каждое из ключевых слов. Например, при запросе "очистка воды" будет найдено словосочетание "очистка воды". При использовании режима "или" результатом поиска будут все страницы, где встречается хотя бы одно ключевое слово ("очистка" или "воды").

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+очистка -воды".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "сток" будут найдены слова "стоков", "стоки" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу "сток!".


Устройства и способы водоочистки | Опреснительные установки. Дистилляторы | Устройства и способы воздухоочистки


Рейтинг@Mail.ru