УСТРОЙСТВО ДЛЯ БИОХИМИЧЕСКОЙ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ОРГАНИЧЕСКИХ И АЗОТСОДЕРЖАЩИХ ЗАГРЯЗНЕНИЙ

УСТРОЙСТВО ДЛЯ БИОХИМИЧЕСКОЙ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ОРГАНИЧЕСКИХ И АЗОТСОДЕРЖАЩИХ ЗАГРЯЗНЕНИЙ


RU (11) 2114070 (13) C1

(51) 6 C02F3/02 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 26.12.2007 - действует 

--------------------------------------------------------------------------------

(21) Заявка: 95113271/25 
(22) Дата подачи заявки: 1995.07.26 
(45) Опубликовано: 1998.06.27 
(56) Список документов, цитированных в отчете о поиске: SU, авторское свидетельство, 1761688, кл. C 02 F 3/02, 1992. 
(71) Заявитель(и): Колесников Владимир Петрович 
(72) Автор(ы): Колесников Владимир Петрович 
(73) Патентообладатель(и): Колесников Владимир Петрович 

(54) УСТРОЙСТВО ДЛЯ БИОХИМИЧЕСКОЙ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ОРГАНИЧЕСКИХ И АЗОТСОДЕРЖАЩИХ ЗАГРЯЗНЕНИЙ 

Изобретение относится к области биохимической очистки сточных вод и может быть использовано для очистки стоков поселков, городов и промпредприятий. Сущность: устройство содержит комбинированное сооружение, которое включает биофильтр с системой орошения, аэротенк-отстойник с водоструйной аэрацией, камеру смешения, циркуляционный насос и технологические трубопроводы I, а также нитрификатор II, конструктивное устройство которого аналогично устройству I и дополнено гелий-неоновыми лазерами (ГНЛ), установленными на лотках системы орошения. Реактор подготовки органического субстрата III оборудован ГНЛ и механическим аэратором. Денитрификатор IV снабжен загрузкой из искусственного полотна. При этом трубопровод исходных стоков подключен к камерам смешения I и II и к реактору III, трубопровод отвода очищенных вод от I подсоединен к камере смешения II, напорный трубопровод циркуляционного насоса подсоединен к системе орошения устройства I, а также к камере смешения II и к реактору III, который в свою очередь подключен трубопроводом к смесителю, установленному на отводящем трубопроводе от II к IV. Искусственная загрузка IV состоит из отдельных ворсистых прядей из капрона, лавсана, нейлона, скрепленных между собой продольным и поперечным плетением и натянута на каркас пилообразной формы. 2 з.п. ф-лы, 3 ил. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к области биохимической очистки хозяйственно-бытовых и близких к ним по составу сточных вод и может быть использовано для очистки стоков поселков, городов, промпредприятий от органических и азотсодержащих загрязнений.

Наиболее близким по достигаемому эффекту является устройство для биохимической очистки сточных вод от органических и азотсодержащих загрязнений, содержащее комбинированное сооружение, включающее биофильтр с системой орошения, аэротенк-отстойник с водоструйной аэрацией, камеру смешения, циркуляционный насос и технологические трубопроводы.

Устройство обеспечивает эффективное окисление органических загрязнений и высокую степень нитрификации сточных вод. Вместе с тем проведение процесса нитрификации требует больших объемов сооружений. Кроме того, нитрификация носит неустойчивый характер из-за неравномерности притока и изменения состава сточных вод по времени.

В технологическом процессе используются энергоемкие насосные и компрессорные агрегаты.

Известно также биостимулирующее действие гелий-неонового лазера (ГНЛ) на активацию биоэнергетических процессов в микробиальных клетках (Восконян К.Ш. , Симонян Н. В. и др., Зависимость радиозащитного действия гелий-неонового лазера на клетки бактерий от интервала времени между двумя видами облучений. Радиобиология, 1987, т. 27, N 5, с. 708-711, Цветкова П.М. и др. Действие лазерного излучения. Применение лазерной техники в биологии и медицине. -Киев: Наукова дума, 1982, с. 77-79).

Специалистами Ростовского НИИ АКХ и Ростовского государственного университета были проведены опыты по воздействию ГНЛ с длиной волны 633 мм на биологическую активность микрофлоры активного ила. Установлено увеличение через 1 ч общего количества бактерий при облучении от 15 с до 3 мин в 3,52-3,86 раза. При этом концентрация NO-3 увеличивалась в 2,5 раза, NH+4 - в 2,2 раза.

На последующей стадии денитрификации в биофильтрах с затопленным слоем загрузки используются в качестве источника органического субстрата органические соединения исходных сточных вод и избыточного активного ила. (Проектирование сооружений для очистки сточных вод, справочное пособие к СНиП. -С.: Стройиздат, 1990, с. 78 - 88). Однако применение стоков повышает концентрацию органических веществ в очищенной воде. Это связано с выносом части органических загрязнений, особенно трудноокисляемых компонентов. Использование прирастающего избыточного ила не обеспечивает необходимое соотношение органического субстрата к нитратному азоту.

Поставленная задача решается тем, что в устройстве для биохимической очистки сточных вод от органических и азотсодержащих загрязнений, содержащем комбинированное сооружение (I), которое включает биофильтр с системой орошения, аэротенк-отстойник с водоструйной аэрацией, камеру смешения, циркуляционный насос и технологические трубопроводы, а также нитрификатор и денитрификатор с затопленным слоем загрузки, в качестве нитрификатора использовано также комбинированное сооружения (II), снабженное гелий-неоновыми лазерами (ГНЛ); в технологическую схему дополнительно включен реактор подготовки органического субстрата III, снабженный ГНЛ и механическим аэратором; денитрификатор IV снабжен загрузкой из искусственного полотна, которые соединены между собой и устройством I технологическими трубопроводами; при этом трубопровод исходных стоков подключен к камерам смешения I и II и к реактору III; трубопровод отвода очищенных вод от I подключен к камере смешения II; напорный трубопровод циркуляционного насоса устройства I подсоединен также к камере смешения устройства II и к реактору III, который в свою очередь подключен трубопроводом к смесителю, установленному на отводящем трубопроводе от II к IV.

Гелий-неоновые лазеры в нитрификаторе II установлены на распределительных лотках системы орошения.

Загрузка денитрификатора выполнена из искусственного полотна, представляющего собой отдельные ворсистые пряди из капрона, лавсана, нейлона, скрепленные между собой продольным и поперечным плетением, и натянутого на каркас пилообразной формы.

На фиг. 1 изображена технологическая схема устройства для биохимической очистки сточных вод от органических и азотсодержащих загрязнений. Устройство включает трубопровод подачи исходных стоков 1, подсоединенный на начальном участке отводящим трубопроводом 2 к камере смешения 3 комбинированного сооружения I, которое состоит из биофильтра 3, системы орошения 4, аэрационных колонн 5, аэротенка-отстойника 6, циркуляционного насоса 7 и напорного трубопровода подают смеси стоков и ила 8, подключенного к системе орошения 4, отводящему трубопроводу 9, который в свою очередь подсоединен к камере смешения 3 нитрификатора II и к реактору подготовки органического субстрата III.

Конструкция нитрификатора II аналогична конструкции комбинированного сооружения I, в конструкцию дополнительно включены гелий-неоновые лазеры 10, установленные над одним или несколькими распределительными лотками системы орошения 4 (фиг.2). Камера смешения нитрификатора II соединена трубопроводом 11 со сборным лотком комбинированного сооружения I и с технологическими трубопроводами 9 и 1 отводящими трубопроводами 12 и 13. На трубопроводе отвода очищенных вод 14 от нитрификатора II к денитрификатору IV установлен смеситель 15, к которому через отводящий трубопровод 16 подсоединен реактор III. К реактору III подведены трубопровод исходных стоков 1 и трубопровод иловой смеси 9, реактор подготовки органического субстрата снабжен гелий-неоновыми лазерами 10 и механическим аэратором 17. Трубопровод подвода смеси очищенных вод и органического субстрата от смесителя 15 к денитрификатору IV подсоединен к распределительным трубопроводам 18 и 19, которые установлены по центрам нижних конических емкостей денитрификатора. В верхней части денитрификатора установлен каркас пилообразной формы с натянутым искусственным полотном 20. Полотно (фиг.3) состоит из отдельных ворсистых прядей искусственного материала ( нейлон, лавсан, капрон), скрепленных продольным и поперечным плетением, с примерным размером ячейки 300 х 300 мм. Сборные лотки денитрификатора соединены с отводящим трубопроводом 21, который в свою очередь подсоединен к приемной камере подоструйного аэратора 22, установленного над аэрационным резервуаром 23.

Устройство для биохимической очистки сточных вод от органических и азотсодержащих загрязнений работает следующим образом.

Сточные воды после предварительной обработки направляются по трубопроводу 1 в камеры смешения 3 комбинированного сооружения I, нитрофикатора II и реактора подготовки органического субстрата III. Отвод стоков в I производится через трубопровод 2, в II - через трубопровод 13.

Окисление основной массы органических загрязнений на первой стадии очистки осуществляется в биофильтре и аэротенке-отстойнике комбинированного сооружения I путем многократной циркуляции смеси сточных вод и ила через камеру смешения 3, систему орошения 4, биофильтр 3, аэрационные колонны 5, аэротенк-отстойник 6. Перекачка смеси производится циркуляционным насосом 7 по напорному трубопроводу 8. Отвод избыточного ила осуществляется постоянно по трубопроводу 9, подсоединенному к трубопроводу 8. Расчет конструктивных параметров сооружения выполняется исходя из максимально возможных нагрузок на ил и высокой скорости клеточного синтеза. При этом допускается получение относительной невысокой степени очистки - остаточное содержание органических загрязнений в отстойной воде может составлять по БПК 30-70 мг/л.

Далее вода направляется по трубопроводу 11 в камеру смешения 3 нитрификатора II. Туда же по трубопроводу 13 подается часть исходных сточных вод из трубопровода 1 и по трубопроводу 12 часть избыточного ила из трубопровода 9.

Ввод неочищенной сточной жидкости повышает эффективность нитрификации при низких начальных концентрациях аммонийного азота.

Подача ила позволяет поддерживать в нитрофикаторе необходимое количество колоний микроорганизмов, формирующих хорошо слипающиеся и осаждающиеся хлопья. Образование хлопьев ила предотвращает вынос легких нитрифицирующих микроорганизмов и обеспечивает высокую прозрачность очищенной воды. Изменением дозы вводимого ила регулируются концентрация и возраст нитрифицирующего ила. Для ускорения темпов размножения нитрофицирующих микроорганизмов и управления процессом нитрификации при колебаниях в притоке и составе сточных вод, изменении температуры жидкости и pH, попадании токсичных компонентов на одном или нескольких распределительных лотках системы орошения 4 устанавливаются гелий-неоновые лазеры 10.

Обработка лазерным излучением циркулирующей смеси стоков и ила ведется в сканирующем режиме по всей ширине лотка (фиг. 2). При размещении лазерной установки с выходной мощностью излучения 25 мВт и длиной волны 0,63 мкм на высоте не менее 300 мм над поверхностью жидкости обеспечивается сканирование зоны шириной не менее 100 мм.

Лазерное излучение стимулирует структурно-функциональную перестройку мембранных образований клеток и клеточных органелл. При этом скорости процессов гетеротрофной ассимиляции, аммонификации и нитрификации увеличиваются в среднем в 2 раза. На последующей стадии денитрификации в качестве источника органического углерода используются органические вещества исходных сточных вод и избыточного ила. Так как "проскок" части сточных вод через денитрификатор с затопленным слоем загрузки повышает БПК очищенных вод, в устройство биологической очистки сточных вод от органических и азотсодержащих загрязнений включен реактор для подготовки органического субстрата III. Исходные сточные воды поступают в реактор III по трубопроводу 1, избыточный активный ил - по трубопроводу 9. Смешение стоков и ила и снабжение процесса подготовки кислородом воздуха осуществляются с помощью механического аэратора 17.

Процесс подготовки органического субстрата предусматривает три фазы роста микроорганизмов: лаг-фазу, фазу ускоренного роста, экспоненциальную фазу. Допускается только не полное окисление до начала продуцирования CO2, H2O. Однако при соотношении массы образующегося избыточного ила к массе необходимых органических веществ сточных вод 0,6:1 полная асиммиляция хлопьями ила органических загрязнений приведет к окислению значительной части органического субстрата. Поэтому для ускорения процесса размножения микроорганизмов, активизации запасных веществ в клетках и отмирания бактерий после выполнения ими основной функции (сорбции загрязнений) в процессе подготовки субстрата использованы гелий-неоновые лазеры (ГНЛ). Лазерами 10 осуществляется облучение поверхности жидкости в реакторе III. В процессе исследований было установлено максимальное увеличение числа облучения бактерий в 5,9 раза через 1 ч после 3-минутного облучения.

Полученный органический субстрат направляется по трубопроводу 16 в смеситель 15, где происходит его смешение с очищенной водой, поступающей по трубопроводу 14. Затем жидкость по трубам 18, 19 подается в нижнюю часть емкости денитрификатора IV. Восходящий поток жидкости проходит через взвешенный слой денитрифицирующего ила и слой ила, иммобилизованного на ворсинках и прядях искусственного полотна 20 (фиг. 3), и оставляет в них частицы хлопьевидного субстрата. Сорбция колониями факультативных анаэробов органического субстрата, связанного цитоплазматическими мембранами микробиальных клеток, входящего в состав клеток, исключает вторичное загрязнение очищенных вод. Всплывающие отработанные и омертвевшие продукты биораспада задерживаются полотном 20. По мере ухудшения прозрачности выходящей воды проводится регенерация полотна струями очищенной воды. Далее вода сливается в сборные желоба и отводится по трубопроводу 21 в приемную камеру водоструйного аэратора 22. При сливе воды через трубы водоструйной эжекции воздуха в контактный резервуар 23 происходят отдувка молекулярного азота и насыщение ее кислородом.

Использование изобретения позволяет уменьшить в 1,5 - 2 раза реакционный объем нитрификатора. Расход электроэнергии на механическую аэрацию и лазерную биостимуляцию в 3-4 раза ниже, чем на дополнительную рециркуляцию иловой смеси в начале резервуара из его конца или из вторичного отстойника, а также из одной ступени в другую в существующих схемах нитриденитрификации. Возможность изменения интенсивности лазерного облучения позоляет упростить управление биологическими процессами при суточных и сезонных колебаниях в притоке и составе сточных вод и попадании ингибиторов. 


ФОРМУЛА ИЗОБРЕТЕНИЯ



1. Устройство для биохимической очистки сточных вод от органических и азотсодержащих загрязнений, содержащее комбинированное сооружение, включающее биофильтр с системой орошения, аэротенк-отстойник с водоструйной аэрацией, камеру смешения, циркуляционный насос и технологические трубопроводы, отличающееся тем, что оно снабжено нитрофикатором, выполненным аналогично комбинированному сооружению и имеющим гелий-неоновые лазеры, реактором подготовки органического субстрата с аэратором и гелий-неоновыми лазерами, смесителем и денитрификатором с загрузкой из искусственного материала, при этом трубопровод подачи исходных стоков присоединен к камерам смешения комбинированного сооружения и нитрификатора и к реактору подготовки органического субстрата, комбинированное сооружение соединено трубопроводом очищенных вод с камерой смешения нитрификатора, напорной трубопровод циркуляционного насоса комбинированного сооружения подсоединен к камере смешения нитрификатора и к реактору подготовки субстрата, который соединен трубопроводом со смесителем, установленным на отводящем трубопроводе от нитрификатора к денитрификатору.

2. Устройство по п. 1, отличающееся тем, что гелий-неоновые лазеры в нитрификаторе установлены на распределительных лотках системы орошения.

3. Устройство по п. 1, отличающееся тем, что загрузка денитрификатора выполнена в виде полотна, состоящего из отдельных ворсистых прядей из капрона, лавсана, нейлона, скрепленных между собой продольным и поперечным плетением и натянутого на каркас пилообразной формы.




ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал
Воздухо- и водоочистка. Опреснительные установки






СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "и" означает, что будут найдены только те страницы, где встречается каждое из ключевых слов. Например, при запросе "очистка воды" будет найдено словосочетание "очистка воды". При использовании режима "или" результатом поиска будут все страницы, где встречается хотя бы одно ключевое слово ("очистка" или "воды").

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+очистка -воды".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "сток" будут найдены слова "стоков", "стоки" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу "сток!".


Устройства и способы водоочистки | Опреснительные установки. Дистилляторы | Устройства и способы воздухоочистки


Рейтинг@Mail.ru