СПОСОБ ОБРАБОТКИ ПИТЬЕВОЙ ВОДЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

СПОСОБ ОБРАБОТКИ ПИТЬЕВОЙ ВОДЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ


RU (11) 2058267 (13) C1

(51) 6 C02F1/467 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 26.12.2007 - прекратил действие 

--------------------------------------------------------------------------------

(21) Заявка: 94037539/26 
(22) Дата подачи заявки: 1994.10.27 
(45) Опубликовано: 1996.04.20 
(56) Список документов, цитированных в отчете о поиске: 1. Авторское свидетельство СССР N 1456370, кл. C 02F 1/467, 1989. 2. Авторское свидетельство СССР N 1142453, кл. C 02F 1/467, 1985. 
(71) Заявитель(и): Товарищество с ограниченной ответственностью Внедренческое предприятие "Катион" 
(72) Автор(ы): Банников В.В.; Львович Ф.И.; Якушев Ю.И.; Пичуев Д.Ю.; Микиртычев В.Я. 
(73) Патентообладатель(и): Товарищество с ограниченной ответственностью Внедренческое предприятие "Катион" 

(54) СПОСОБ ОБРАБОТКИ ПИТЬЕВОЙ ВОДЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 

Изобретение относится к обработке воды с целью получения чистой питьевой воды электрохимическими методами и может быть также использовано как для обработки и обеззараживания воды, так и для очистки сточных вод перед их сбросом в водоемы. Способ обработки питьевой воды включающей добавление в воду хлорсодержащего реагента. В качестве хлорсодержащего реагента используют хлор, полученный электролизом раствора хлорида щелочного металла в анодной камере электролизера с диафрагмой из инертного материала. Газообразный электролитический хлор из анодной камеры эжектируют обрабатываемой водой, и в полученную хлорированную воду дополнительно вводят раствор гидроксида щелочного металла (раствор электролитической щелочи), нарабатываемый в катодной камере этого же электролизера с диафрагмой. Обрабатываемую воду подают с расходом потока 10 - 1000 л/ч на каждый ампер токовой нагрузки на электролизере. Электролиз ведут при анодной плотности тока 0,5 - 4,5 кА/м2. 2 с. п. ф-лы, 1 ил. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к обработке воды с целью получения чистой питьевой воды электрохимическими методами и может быть использовано как для обработки и обеззараживания воды, так и для очистки сточных вод перед их сбросом в водоемы.

Известен способ консервирования питьевой воды путем ее электролиза. Перед электролизом в воду вводят бикарбонат натрия (двууглекислую соду) до достижения рН 8,3, и процесс ведут в герметичной анодной камере двухкамерного мембранного электролизера с нерастворимыми электродами и катионообменной мембраной до достижения в обрабатываемой воде показателя рН 2 не менее 30 [1]

Недостатки известного способа наличие емкостей для приготовления и хранения бикарбоната натрия, введение в обрабатываемую воду дополнительного реагента соды, даже при очень большой степени ее очистки, все равно приводит к загрязнению воды дополнительными примесями.

Наиболее близким к заявленному способу является способ обработки воды, включающий добавление хлорсодержащего реагента с последующей обработкой в электролизере. В качестве реагента используют хлорамин Б. Обработку ведут при анодной плотности тока 1,25-1,5 кА/м2 и линейной скорости протока обеззараживаемой воды 0,5-1,0 см/с, что соответствует расходу потока обрабатываемой воды в электролизере прямоугольного сечения примерно 14,4-28,8 л/(А*ч).

Наиболее близким устройством для обработки воды является устройство, включающее корпус, в котором размещены растворимые электроды из нержавеющей стали, патрубки для ввода и вывода воды [2]

Недостаток известного способа наличие реагента, который необходимо вводить в обрабатываемую воду перед электролизом. Дорогостоящий хлорсодержащий реагент имеет ограниченное время хранения из-за самопроизвольного разложения с потерей активного хлора, что затрудняет использование этого способа в отдаленных районах и регионах с жарким климатом. Необходимость проведения процесса с растворимыми электродами приводит к дополнительному загрязнению воды ионами металлов. Низкая линейная скорость обрабатываемой воды, связанная с механизмом обеззараживания в известном способе делает этот способ и устройство для его реализации малопроизводительными, что особенно важно при обработке больших объемов воды.

Для устранения указанных недостатков предложен способ обработки питьевой воды, включающий добавление в воду хлорсодержащего реагента. В качестве хлорсодержащего реагента используют хлор, полученный электролизом раствора хлорида щелочного металла в анодной камере электролизера с диафрагмой из инертного материала. Газообразный электролитический хлор из анодной камеры эжектируют обрабатываемой водой, и в полученную хлорированную воду дополнительно вводят раствор гидроксида щелочного металла (раствор электролитической щелочи), нарабатываемый в катодной камере этого же электролизера с диафрагмой, при этом обрабатываемую воду подают с расходом потока 10-1000 л/ч на каждый ампер токовой нагрузки на электролизере, а электролиз ведут при анодной плотности тока 0,5-4,5 кА/м2.

Предложено устройство для обработки питьевой воды, в котором может быть осуществлен указанный способ.

На чертеже схематично представлено предложенное устройство, вид сверху.

Устройство содержит герметичный корпус 1, в котором размещены нерастворимые электроды: анод 2 и катод 3, разделенные фильтрующей диафрагмой 4 из инертного материала с образованием анодной 5 и катодной 6 камер. Устройство дополнительно снабжено тремя камерами, две из которых 7 и 8 имеют общую перегородку с анодной камерой, а третья 9 с катодной камерой. Дополнительная камера 7 со стороны анода снабжена патрубком 10 для подачи обрабатываемой воды, соединенным с эжектором 11 для вакуумирования хлора из анодной камеры, патрубком 12 для вывода хлорированной воды и имеет канал 13 ниже уровня жидкости для сообщения с дополнительной камерой 8 со стороны анода. Камера 8 заполнена твердым хлоридом щелочного металла и имеет канал 14 в перегородке с анодной камерой для подачи насыщенного раствора хлорида натрия в анодную камеру. Дополнительная камера 9 со стороны катода снабжена патрубком 15 для подачи хлорированной воды и патрубком 16 для вывода обработанной воды и имеет в перегородке с катодной камерой канал 17 для ввода раствора гидроксида щелочного металла.

Предложенное устройство работает следующим образом. В дополнительную камеру 7 загружают твердый хлорид щелочного металла, например хлорид натрия. По патрубку 10 начинают подачу обрабатываемой воды и по мере заполнения устройства водой на электроды 2 и 3 подают электрический ток. Часть потока обрабатываемой воды поступает по каналу 13 в камеру 7, в которой происходит растворение соли. Насыщенный рассол по каналу 14 из камеры 7 поступает в анодную камеру 5, в которой на аноде 2 генерируется электролитический газообразный хлор. Хлор с помощью потока обрабатываемой воды через эжектор 11 поступает в камеру 8, в которой происходит смешивание газообразного хлора и воды. Хлорированная вода из камеры 8 через патрубок 10 и трубопровод поступает в камеру 9 (через патрубок 15). Электролит из анодной камеры 5 фильтруется через диафрагму 4 в катодную камеру 6, в которой осуществляется наработка электролитической щелочи. Электролитическая щелочь перетекает по каналу 17 в камеру 9, в которой происходит смешение хлорированной воды и электролитической щелочи. Из камеры 9 через патрубок 16 выводят обработанную питьевую воду. В процессе работы в камеру 7 периодически (1 раз в 4-10 ч) добавляют твердый хлорид щелочного металла.

Обработка воды непосредственно электролитическим хлором позволяет обеспечить наиболее высокую степень обеззараживания воды. Последующее смешивание хлорированной воды с электролитической щелочью позволяет практически исключить проскоки газообразного хлора с обрабатываемой водой, а также перевести активный хлор, содержащийся в воде после выхода из камеры 8, в более устойчивую форму гипохлорит натрия, что обеспечивает высокий консервирующий эффект обработанной воды.

П р и м е р 1. Воду инфицируют тест-микроорганизмами с использованием односуточной культуры E.Coli (кишечная палочка) в концентрации (1,60,2) 105 УЕ/л. Испытания проводят при летних значениях температуры воды (12-13оС). Инфицированную воду с рН 7,8 обрабатывают в электролизере при расходе потока воды 800 л/ч на один ампер токовой нагрузки и при плотности тока 1,5 кА/м2. В качестве анода используют титан, активированный металлоксидным покрытием (ОРТА); в качестве инертного материала для изготовления диафрагмы используют гидрофилизированные волокна фторополимера. После обработки в электролизере вода имеет следующие характеристики: рН 7,5; остаточное содержание активного хлора 9,2 мг/л; число модельных микроорганизмов, УЕ/л 0. Напряжение на электролизере составляет 3,6 В.

П р и м е р 2. Воду инфицируют тест-микроорганизмами, образующими споры, с использованием спор B.Cereus в концентрации (1,00,1) х 105УЕ/л. Испытания проводят при летних значениях температуры воды (12-13оС). Инфицированную воду с рН 9,0 обрабатывают в электролизере при расходе потока воды 10 л/ч на один ампер токовой нагрузки и при плотности тока 2,0 кА/м2. Материалы электродов и диафрагмы аналогичны примеру 1. После обработки в электролизере вода имеет следующие характеристики: рН 6,6; остаточное содержание "активного" хлора 98 мг/л; число модельных микроорганизмов, УЕ/л 0. Напряжение на электролизере составляет 3,9 В.

Отбор проб исходной и обработанной воды, их микробиологический анализ, идентификацию микроорганизмов, учет и статистическую обработку результатов проводят в соответствии с ГОСТ 24849-81 "Вода питьевая. Полевые методы санитарно-микробиологического анализа".

Увеличение скорости потока обрабатываемой воды свыше 1000 л/ч на каждый ампер токовой нагрузки на электролизере не позволяет эффективно вести процесс обеззараживания воды (в воде остаются единичные жизнеспособные бактерии) и не удается обеспечить требуемую остаточную концентрацию активного хлора. Снижение расхода ниже 10 л/ч неоправданно с точки зрения снижения производительности устройства, в котором реализуется предлагаемый способ. Снижение рабочей анодной плотности тока меньше 0,5 кА/м2 не позволяет обеспечить требуемую степень обеззараживания, что может быть связано с ухудшением качества генерируемого на аноде электролитического хлора за счет увеличения в нем доли кислорода. Увеличение плотности тока больше 4,5 кА/м2 неоправданно из-за увеличения затрат электроэнергии на процесс обработки воды.

Предложенное изобретение по сравнению с известными позволяет исключить использование дорогостоящих хлорсодержащих реагентов, имеющих крайне ограниченный срок хранения, избежать допол- нительного загрязнения обрабатываемой воды продуктами разложения реагентов и разрушения электродов, повысить производительность устройства для обработки питьевой воды. 


ФОРМУЛА ИЗОБРЕТЕНИЯ



1. Способ обработки питьевой воды, включающий добавление в воду хлорсодержащего реагента, отличающийся тем, что в качестве хлорсодержащего реагента используют хлор, полученный электролизом раствора хлорида щелочного металла в анодной камере электролизера с диафрагмой из инертного материала, хлор из анодной камеры эжектируют обрабатываемой водой, а затем в воду дополнительно вводят раствор гидроксида щелочного металла, полученный в катодной камере этого же электролизера с диафрамой, при этом обрабатываемую воду подают с расходом потока 10 1000 л/ч на каждый 1 А токовой нагрузки на электролизере, а электролиз ведут при анодной плотности тока 0,5 4,5 кА/м2.

2. Устройство для обработки питьевой воды, включающее корпус с размещенными в нем анодом и катодом, отличающееся тем, что между анодом и катодом размещена диафрагма из инертного материала с образованием анодной и катодной камер, устройство дополнительно снабжено тремя камерами, две из которых имеют общую перегородку с анодной камерой, а третья с катодной камерой, одна из дополнительных камер со стороны анода снабжена патрубком для подачи обрабатываемой воды, соединенным с эжектором для вакуумирования хлора из анодной камеры, патрубком для вывода хлорированной воды и имеет канал ниже уровня жидкости для сообщения с другой дополнительной камерой со стороны анода, в которой размещен твердый хлорид щелочного металла, и в перегородке, отделяющей ее от анодной камеры, выполнен канал для подачи насыщенного раствора хлорида натрия в анодную камеру, дополнительная камера со стороны катода снабжена патрубками для подачи хлорированной воды и вывода обработанной воды и имеет в перегородке с катодной камерой канал для ввода раствора гидроксида щелочного металла.




ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал
Воздухо- и водоочистка. Опреснительные установки






СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "и" означает, что будут найдены только те страницы, где встречается каждое из ключевых слов. Например, при запросе "очистка воды" будет найдено словосочетание "очистка воды". При использовании режима "или" результатом поиска будут все страницы, где встречается хотя бы одно ключевое слово ("очистка" или "воды").

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+очистка -воды".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "сток" будут найдены слова "стоков", "стоки" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу "сток!".


Устройства и способы водоочистки | Опреснительные установки. Дистилляторы | Устройства и способы воздухоочистки


Рейтинг@Mail.ru