ЭЛЕКТРОЛИТИЧЕСКАЯ ЯЧЕЙКА НИЗКОАМПЕРНОГО ЭЛЕКТРОЛИЗЕРА ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА И КИСЛОРОДА ИЗ ВОДЫ

ЭЛЕКТРОЛИТИЧЕСКАЯ ЯЧЕЙКА НИЗКОАМПЕРНОГО ЭЛЕКТРОЛИЗЕРА ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА И КИСЛОРОДА ИЗ ВОДЫ


RU (11) 2227817 (13) C1

(51) 7 C25B1/04, C25B9/06 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 15.01.2008 - прекратил действие, но может быть восстановлен 

--------------------------------------------------------------------------------

(21) Заявка: 2003117806/15 
(22) Дата подачи заявки: 2003.06.16 
(24) Дата начала отсчета срока действия патента: 2003.06.16 
(45) Опубликовано: 2004.04.27 
(56) Список документов, цитированных в отчете о поиске: RU 2175027 С2, 20.10.2001. RU 2157861 С2, 20.10.2000. RU 2157427 С1, 10.10.2000. US 3969214 А, 13.07.1976. US 3992271 А, 16.11.1976. US 4107008 А, 15.08.1978. 
(72) Автор(ы): Канарёв Ф.М.; Подобедов В.В.; Тлишев А.И. 
(73) Патентообладатель(и): Кубанский государственный аграрный университет 
Адрес для переписки: 350044, г.Краснодар, ул. Калинина, 13, КГАУ, ПИО 

(54) ЭЛЕКТРОЛИТИЧЕСКАЯ ЯЧЕЙКА НИЗКОАМПЕРНОГО ЭЛЕКТРОЛИЗЕРА ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА И КИСЛОРОДА ИЗ ВОДЫ 

Электролитическая ячейка содержит конический корпус, изготовленный из токопроводящего материала и выполняющий роль катода, дополнительные конические электроды, коническую крышку из токопроводящего материала, выполняющую роль анода. Цилиндрические основания корпуса, дополнительных электродов и крышки имеют кольцевые выемки для размещения диэлектрического кольца. Корпус, дополнительные электроды и крышка соединяются болтами, вставленными в отверстия цилиндрических оснований корпуса, дополнительных электродов и крышки. Изоляция между анодом, дополнительными электродами и катодом обеспечивается диэлектрическими кольцами, диэлектрическими шайбами и диэлектрическими втулками. Раствор подается в межэлектродное пространство через канал из емкости. Газы выходят через патрубок. Технический эффект - создание условий для поляризации ионов раствора и молекул воды в двух плоскостях: горизонтальной и вертикальной, в результате чего на аноде появляется положительный, а на катоде - отрицательный потенциалы еще до включения ячейки в электрическую сеть и процесс выделения газов продолжается и после отключения ячейки от сети. За счет этого затраты энергии на процесс разложения воды на водород и кислород значительно уменьшаются. 1 ил., 1 табл.




ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к физико-химическим технологиям и технике для получения водорода и кислорода.

Известны технические устройства (Гольштейн А.Б., Серебрянский Ф.З. Эксплуатация электролизных установок для получения водорода и кислорода. - М.: Энергия, 1969) для получения водорода и кислорода.

Известно техническое решение (Патент США № 969214, С 25 В 1/02, 1976), содержащее корпус, патрубок ввода рабочего раствора, межэлектродную камеру, анод, соединенный с положительным полюсом источника питания, катод, соединенный с отрицательным источником питания.

Также известно техническое решение (Патент Англии № 1139614, кл. С 01 В 13/06, 08.01. 1969), содержащее корпус, изготовленный из диэлектрического материала, со сквозным отверстием, межэлектродную камеру, патрубки для ввода и вывода рабочего раствора, анод, соединенный с положительным полюсом источника питания, и катод, соединенный с отрицательным полюсом источника питания.

Недостатком указанных и других аналогичных изобретений является то, что для получения водорода и кислорода используется неэкономный высокоамперный процесс электролитической диссоциации молекул воды.

Известно устройство для получения тепловой энергии, водорода и кислорода (см. Патент России №2175027, C 02 F 1/46, 2001 - прототип), содержащее корпус с нижним цилиндрическим приливом и нижнюю крышку, изготовленные из диэлектрического материала; камеру для конденсации пара; анод, соединенный с положительным источником питания, и катод, соединенный с отрицательным источником питания, а также патрубок для ввода раствора.

Недостатком указанного изобретения является то, что для получения водорода и кислорода используется труднорегулируемая плазма как источник термической диссоциации молекул воды.

Техническим решением задачи является получение водорода и кислорода путем экономного низкоамперного электролитического разложения воды.

Поставленная цель достигается тем, что в электролитической ячейке для получения водорода и кислорода из воды содержится корпус, катод, подсоединенный к отрицательному полюсу источника питания, анод, подсоединенный к положительному полюсу источника питания, канал для подачи раствора в межэлектродную камеру, патрубок для выхода газов, в качестве катода использован конический корпус с плоским цилиндрическим основанием по наружной поверхности, а в качестве анода использована коническая крышка с плоским цилиндрическим основанием по наружной поверхности, между анодом и катодом установлены дополнительные конические электроды с плоскими цилиндрическими основаниями и осевыми отверстиями в вершинах конусов; при этом основание корпуса имеет канал для подачи раствора в межэлектродные камеры, патрубок для выхода газов расположен в верхней части конуса крышки; корпус, дополнительные электроды и крышка соединены болтами, имеющими диэлектрические шайбы и диэлектрические втулки, а цилиндрические основания корпуса, дополнительных электродов и крышки имеют кольцевые выемки, в которых расположены диэлектрические кольца.

Новизна заявляемого устройства обусловлена тем, что конические поверхности анода, катода и дополнительных электродов создают условия для поляризации ионов раствора и молекул воды в двух плоскостях: горизонтальной и вертикальной. В результате на аноде появляется положительный потенциал до включения ячейки в электрическую сеть, а на катоде - отрицательный. После включения ячейки в электрическую сеть предварительно поляризованные ионы раствора и молекулы воды диссоциируют на водород и кислород при меньшем расходе электронов из электрической сети. Доказательством этого является небольшая сила тока, поэтому такой процесс назван низкоамперным. Потенциал на электродах сохраняется и после отключения ячейки от сети. За счет этого затраты энергии на процесс разложения воды на водород и кислород значительно уменьшаются.

По данным патентно-технической литературы не обнаружена аналогичная совокупность признаков, при которых значительно уменьшаются затраты энергии на получение водорода и кислорода, что позволяет судить об изобретательском уровне предложения. Сущность изобретения поясняется чертежом, где изображен общий вид устройства.

Электролитическая ячейка для получения водорода и кислорода содержит конический корпус 1 с плоским цилиндрическим основанием 2, изготовленный из токопроводящего материала и выполняющий роль катода, дополнительные конические электроды 3, изготовленные из токопроводящего материала, с осевыми отверстиями в вершинах конусов (на фиг.1 показан один электрод) и цилиндрическими основаниями 4, коническую крышку 5 с плоским цилиндрическим основанием 6, изготовленную из токопроводящего материала и выполняющую роль анода. Цилиндрические основания корпуса, дополнительных электродов и крышки имеют кольцевые выемки для размещения диэлектрических колец 7. Корпус 1, электроды 3 и крышка 5 соединяются болтами 8, вставленными в отверстия цилиндрических оснований корпуса, дополнительных электродов и крышки. Изоляция между анодом, внутренними электродами и катодом обеспечивается диэлектрическими кольцами 7, диэлектрическими шайбами 9 и диэлектрическими втулками 10. Раствор подается в межэлектродное пространство через канал 11 из емкости 12. Газы выходят через патрубок 13.

Электролитическая ячейка работает следующим образом. Электролитический раствор заливается в емкость 12 до заданного уровня. Ячейка подключается к сети постоянного тока. Устанавливается напряжение, соответствующее 1,6-2,2 В на пару электродов. Сила тока мало зависит от величины площадей поверхностей анода, катода и дополнительных электродов и оказывается близкой к величине 0,02 А.

Через несколько минут после подключения ячейки к электрической сети начинается активное выделение газов; оно продолжается и после отключения ячейки от электрической сети. Процесс выделения газов при отключенной сети угасает постепенно в течение нескольких часов. Средние результаты многократных измерений приведены в таблице.

Самым надежным способом определения количества газов, выделяющихся при электролизе воды, является метод, учитывающий массу диссоциированной воды. Ниже (см. табл.) приводятся результаты экспериментов, в которых был применен этот метод.

Известно, что грамм-атом численно равен атомной массе вещества, а грамм-молекула - молекулярной массе вещества. Например, грамм-молекула водорода в молекуле воды равна 2 г, а грамм-атом атома кислорода - 16 г. Грамм-молекула воды равна 18 граммам. Так как масса водорода в молекуле воды составляет 2100/18=11,11%, а масса кислорода - 16100/18=88,89%, то это же соотношение водорода и кислорода содержится в одном литре воды. Это означает, что в 1000 г воды содержится 111,11 г водорода и 888,89 г кислорода.

Один литр водорода весит 0,09 г, а один литр кислорода -1,47 г. Это означает, что из одного литра воды можно получить 111,11/0,09=1234,44 л водорода и 888,89/1,47=604,69 л кислорода. Из этого следует, что 1 г воды содержит 1,23 л водорода.

Затраты электроэнергии на получение 1000 л водорода сейчас составляют 4 кВтч, а на один литр - 4 Втч. Поскольку из одного грамма воды можно получить 1,234 л водорода, то на получение водорода из одного грамма воды сейчас расходуется 1,2344=4,94 Втч.

Инструменты и оборудование, использованные при эксперименте

Экспериментальная ячейка низкоамперного электролизера; вольтметр М2004 (класс точности 0,2 ГОСТ 8711-78); амперметр М2015 (класс точности 0,2 ГОСТ 8711-60); электронные весы с ценой деления 0,1 и 0,01 г; секундомер с ценой деления 0,1с.




ФОРМУЛА ИЗОБРЕТЕНИЯ



Электролитическая ячейка для получения водорода и кислорода из воды, содержащая корпус, катод, подсоединенный к отрицательному полюсу источника питания, анод, подсоединенный к положительному полюсу источника питания, канал для подачи раствора в межэлектродную камеру, патрубок для выхода газов, отличающаяся тем, что в качестве катода использован конический корпус с плоским цилиндрическим основанием по наружной поверхности, а в качестве анода использована коническая крышка с плоским цилиндрическим основанием по наружной поверхности, между анодом и катодом установлены дополнительные конические электроды с плоскими цилиндрическими основаниями и осевыми отверстиями в вершинах конусов, при этом основание корпуса имеет канал для подачи раствора в межэлектродные камеры, патрубок для выхода газов расположен в верхней части конуса крышки, корпус, дополнительные электроды и крышка соединены болтами, имеющими диэлектрические шайбы и диэлектрические втулки, а цилиндрические основания корпуса, дополнительных электродов и крышки имеют кольцевые выемки, в которых расположены диэлектрические кольца.