УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ТЕПЛОВОЙ ЭНЕРГИИ, ВОДОРОДА И КИСЛОРОДА

УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ТЕПЛОВОЙ ЭНЕРГИИ, ВОДОРОДА И КИСЛОРОДА


RU (11) 2258098 (13) C9

(51) МПК
C25B 1/04 (2006.01) 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 15.01.2008 - прекратил действие, но может быть восстановлен 

--------------------------------------------------------------------------------

Документ: В формате PDF 
Переиздание: C1 
Информация о коррекции: Предыдущая версия документа 
(21) Заявка: 2003135736/15 
(22) Дата подачи заявки: 2003.12.08 
(24) Дата начала отсчета срока действия патента: 2003.12.08 
(45) Опубликовано: 2005.08.10 
(48) Коррекция опубликована: 2006.04.27 
в бюллетене №: 200612 
(56) Список документов, цитированных в отчете о поиске: RU 2157861 С2, 20.10.2000. RU 2157427 C1, 10.10.2000. RU 2213162 С2, 27.09.2003. WO 91/07525 А2, 30.05.1991. US 3969214 A, 13.07.1976. US 3992271 А, 16.11.1976. 
(72) Автор(ы): Канарёв Ф.М. (RU); Тлишев А.И. (RU) 
(73) Патентообладатель(и): Кубанский Государственный аграрный университет (RU) 
Адрес для переписки: 350044, г.Краснодар, ул. Калинина, 13, КГАУ, ПИО 

(54) УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ТЕПЛОВОЙ ЭНЕРГИИ, ВОДОРОДА И КИСЛОРОДА
Изобретение относится к физико-химическим технологиям получения тепла, водорода и кислорода. Устройство содержит корпус, выполненный из диэлектрического материала, и крышку, также выполненную из диэлектрического материала. Анод выполнен плоским кольцевым без отверстий и установлен на диэлектрический цилиндрический прилив диэлектрического анодного стержня с осевым отверстием. Диэлектрический стержень вместе с плоским кольцевым анодом введен в осевое отверстие крышки посредством резьбы. Катод с осевым отверстием введен посредством резьбы в осевое отверстие катодного цилиндрического диэлектрического стержня. Катодный цилиндрический диэлектрический стержень вместе с катодом введен посредством резьбы в осевое отверстие в дне корпуса соосно с осевым отверстием анодного диэлектрического стержня. Зазор между диэлектрическим приливом анодного диэлектрического стержня и дном корпуса регулируется осевым перемещением анодного диэлектрического стержня посредством резьбы в осевом отверстии крышки. Анод и катод подсоединены к источнику питания. Технический эффект - повышение устойчивости технологического процесса и энергетических показателей устройства. 1 ил., 1 табл. 




ОПИСАНИЕ ИЗОБРЕТЕНИЯ


Изобретение относится к физико-химическим технологиям и технике для получения тепла, водорода и кислорода.

Известно техническое решение (см. Яковлев С.В., Краснобородько И.Г. и Рогов В.М. /Технология электрохимической очистки воды. Л., Стройиздат, 1987, с 207-211, 227-231), содержащее корпус с патрубками для подвода и отвода обрабатываемого раствора, электроразрядную камеру с размещенными в ней плоским и игольчатым электродом.

Известно техническое решение, описанное в SU 487665, 15.10.75, С 25 В 9/00, содержащее корпус, верхнюю и нижнюю крышки, патрубки для ввода и вывода рабочего раствора, анод, соединенный с положительным полюсом источника питания, и катод, соединенный с отрицательным полюсом источника питания.

Также известно техническое решение, описанное в патенте России №2157861 (прототип), для получения тепловой энергии водорода и кислорода, содержащее корпус, выполненный из диэлектрического материала, крышку, также выполненную из диэлектрического материала, которая имеет цилиндроконический прилив со сквозным отверстием, образующий совместно с корпусом анодную и катодную полости, анод выполнен плоским, кольцевым с отверстиями, расположен в анодной полости и соединен с положительным полюсом источника питания, катод - в виде стержня из тугоплавкого материала, вставлен в диэлектрический стержень с наружной резьбой, посредством которой он введен в межэлектродную камеру через резьбовое отверстие в корпусе и центрирован в сквозном отверстии крышки и соединен с отрицательным полюсом источника питания, патрубок для ввода рабочего раствора расположен в средней части анодной полости.

Недостатком известных изобретений является то, что они имеют низкую энергетическую эффективность и недостаточную устойчивость технологического процесса.

Техническим решением задачи является повышение устойчивости технологического процесса и энергетических показателей устройства.

Поставленная задача решается тем, что в устройстве для получения тепловой энергии водорода и кислорода, содержащем корпус, выполненный из диэлектрического материала, крышку, также выполненную из диэлектрического материала, анод выполнен плоским кольцевым без отверстий и установлен на диэлектрический цилиндрический прилив диэлектрического анодного стержня с осевым отверстием, диэлектрический стержень вместе с плоским кольцевым анодом введен в осевое отверстие крышки посредством резьбы, катод с осевым отверстием введен посредством резьбы в осевое отверстие катодного цилиндрического диэлектрического стержня, катодный цилиндрический диэлектрический стержень вместе с катодом введен посредством резьбы в осевое отверстие в дне корпуса соосно с осевым отверстием анодного диэлектрического стержня, зазор между диэлектрическим приливом анодного диэлектрического стержня и дном корпуса регулируется осевым перемещением анодного диэлектрического стержня посредством резьбы в осевом отверстии крышки, при этом анод и катод подсоединены к источнику питания.

Новизна заявляемого предложения обусловлена тем, что анод имеет плоскую кольцевую форму без отверстий, что позволило увеличить площадь зазора между торцевой поверхностью диэлектрической крышки и торцевой поверхностью диэлектрического цилиндрического прилива анодно-катодного диэлектрического стержня. Поскольку в указанном зазоре идет поляризация молекул и ионов воды, то увеличенная площадь этого зазора значительно повышает устойчивость процесса динамического разрушения и диссоциации молекул и ионов воды. Повышение устойчивости процесса исключает необходимость установки автоматических систем для регулирования его параметров. Все это повышает эффективность устройства для получения тепловой энергии, водорода и кислорода.

При такой схеме устройства можно подобрать резонансную частоту воздействия на молекулы и ионы воды и таким образом резко уменьшить затраты энергии на их разрушение. При последующем синтезе молекул и ионов воды, разрушенных резонансным электромагнитным полем, выделяется дополнительная тепловая энергия. Таким образом устройство генерирует одновременно тепловую энергию и смесь газов: водород и кислород.

По данным патентно-технической литературы, не обнаружена аналогичная совокупность признаков, что позволяет судить об изобретательском уровне предложения.

Сущность изобретения поясняется чертежом, где изображен общий вид устройства.

Устройство для получения тепловой энергии водорода и кислорода содержит корпус 1, изготовленный из диэлектрического материала и имеющий осевое отверстие в дне; диэлектрическую крышку 2 также с осевым отверстием. Корпус 1 и крышка 2 образуют анодную полость 3. Плоский кольцевой анод 4 расположен на диэлектрическом приливе 5 анодного диэлектрического стержня 6 с осевым отверстием 7. Анодный диэлектрический стержень 6 вместе с плоским анодом 4 введен в осевое отверстие крышки 2 посредством резьбы 8. Цилиндрический катод 9 с осевым отверстием 10 вставлен в осевое отверстие 11 катодного диэлектрического стержня 12, который посредством резьбы 13 введен в осевое отверстие на дне корпуса 1. Катодная полость образуется увеличенной частью 14 осевого отверстия 11 катодного диэлектрического стержня 12. Зазор 15 между диэлектрическим дном корпуса 1 и торцевой поверхностью диэлектрического прилива 5 на анодном диэлектрическом стержне 6 изменяет перемещение анодного диэлектрического стержня 6 в осевое посредством резьбы 8 в осевом отверстии крышки 2. Патрубок 16 для подачи раствора в анодную полость 3 установлен на боковой стенке корпуса 1. Патрубок 17 для выхода кислорода расположен в отверстии крышки 2.

Устройство работает следующим образом. Устанавливается заданный расход раствора, проходящего через устройство. Включается блок питания и устанавливается заданное напряжение. Через несколько минут процесс приобретает установившийся характер. После этого задается необходимая частота импульсов и начинается процесс фиксирования расхода раствора, напряжения, тока и разности температур раствора на входе и выходе из устройства (см. табл.). При этом раствор поступает в анодную полость 3, а затем в щель 15, где под действием электрических импульсов происходит поляризация молекул и ионов воды. После разрушения их химических связей и последующей диссоциации нагретый раствор выходит через отверстие 10 в катоде 9 и осевое отверстие 11 катодного диэлектрического стержня 12. Водород выходит через осевое отверстие 7 анодного диэлектрического стержня 6. Кислород выходит через патрубок 17.


Показатели 1 2 3 Сред. 
1-масса раствора, прошедшего через реактор m, кг 1,170 1,112 1,122 1,135 
2-температура раствора на входе в реактор t1, град. 25 25 25 25 
3-температура раствора на выходе из реактора t2, град. 44 45 45 45 
4-разность температур раствора t=t2-t1, град. 19 20 20 20 
5-длительность эксперимента , с 300 300 300 300 
6-показания вольтметра V, В 4,50 4,50 4,50 4,50 
7-показания амперметра I, А 2,3 2,3 2,3 2,3 
8-расход электроэнергии E 1=I·V· , кДж 3,1 3,1 3,1 3,1 
9-энергия нагретого раствора, Е2=4,19·m· t, кДж 93,14 93,19 94,02 93,45 
10-показатель эффективности реактора К=Е2/Е1 30,05 30,06 30,33 30,15 






ФОРМУЛА ИЗОБРЕТЕНИЯ


Устройство для получения тепловой энергии, водорода и кислорода, содержащее корпус, выполненный из диэлектрического материала, крышку из диэлектрического материала, анод, катод и патрубок для ввода рабочего раствора, отличающееся тем, что анод выполнен плоским кольцевым без отверстий и установлен на диэлектрический цилиндрический прилив диэлектрического анодного стержня с осевым отверстием, диэлектрический стержень вместе с плоским кольцевым анодом введен в осевое отверстие крышки посредством резьбы, катод с осевым отверстием введен посредством резьбы в осевое отверстие катодного цилиндрического диэлектрического стержня, катодный цилиндрический диэлектрический стержень вместе с катодом введен посредством резьбы в осевое отверстие в дне корпуса соосно с осевым отверстием анодного диэлектрического стержня, зазор между диэлектрическим приливом анодного диэлектрического стержня и дном корпуса регулируется осевым перемещением анодного диэлектрического стержня посредством резьбы в осевом отверстии крышки, при этом анод и катод подсоединены к источнику питания.