СПОСОБ ПЕРЕРАБОТКИ ОТРАБОТАННОГО РАСПЛАВА ТИТАНОВЫХ ХЛОРАТОРОВ

СПОСОБ ПЕРЕРАБОТКИ ОТРАБОТАННОГО РАСПЛАВА ТИТАНОВЫХ ХЛОРАТОРОВ


RU (11) 2058404 (13) C1

(51) 6 C22B7/00, C22B3/00, C22B34/32 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 07.12.2007 - прекратил действие 

--------------------------------------------------------------------------------

(21) Заявка: 93041200/02 
(22) Дата подачи заявки: 1993.08.16 
(45) Опубликовано: 1996.04.20 
(56) Список документов, цитированных в отчете о поиске: 1. Авторское свидетельство СССР N 138058, кл. C 22B 7/00, 1961. 2. Авторское свидетельство СССР N 168886, кл. C 22B 7/00, 1965. 3. Кудрявский Ю.П. и др. Технология локальной нейтрализации кислых растворов от гидроразмыва отходов титанового производства. - Цветные металлы, 1992, N 6, с.48- 49. 
(71) Заявитель(и): АОО "АВИСМА титано-магниевый комбинат" 
(72) Автор(ы): Кудрявский Ю.П.; Фрейдлина Р.Г.; Фирстов Г.А.; Рзянкин С.А.; Бондарев Э.И.; Ушакова Н.Л. 
(73) Патентообладатель(и): АОО "АВИСМА титано-магниевый комбинат" 

(54) СПОСОБ ПЕРЕРАБОТКИ ОТРАБОТАННОГО РАСПЛАВА ТИТАНОВЫХ ХЛОРАТОРОВ 

Изобретение относится к способу переработки отработанного расплава титановых хлораторов, к области цветной металлургии и может быть использовано при переработке, утилизации и обезвреживании отходов хлорирования титановых, например ильменитовых, концентратов. Сущность отработанный расплав титановых хлораторов сливают в воду, концентрируют пульпу путем циркуляции, обрабатывают раствором полиакриламида, осаждают из осветленных растворов гидроксиды металлов щелочным реагентом. Осаждение ведут последовательно в три стадии. Сначала при рН 3,5 - 5,0, преимущественно 4,0 - 4,5, осаждают гидроксиды хрома, редких и радиоактивных металлов, которые отделяют от раствора. Затем осаждение ведут в присутствии окислителя при рН 2,5 - 3,5 в течение 20 - 50 ч, после отделения осадка оксигидроксида железа осаждение проводят при рН 9,5 - 11,0, преимущественно 10,0-10,5, в течение 4 - 6 ч. 3 табл. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к области цветной металлургии и может быть использовано при комплексной переработке, утилизации и обезвреживанию отходов процесса хлорирования ильменитовых концентратов.

Согласно существующей технологии, при получении тетрахлорида титана образуется большое количество отходов производства: отработанного плава, возгонов и пульп титановых хлораторов. На 1 т TiCl4 образуются десятки тонн в год отходов, содержащих натрий, калий, магний, кальций, алюминий, титан, скандий, цирконий, торий, продукты его распада, ниобий, тантал, ванадий, железо, марганец, хром, кремний, углерод и др.

В настоящее время существуют, в основном, 2 метода "переработки" таких отходов:

а) отработанные плавы и возгоны сливают в воду при соотношении вода: отходы 10, образующуюся пульпу сбрасывают в кислотную канализацию комбината и направляют в так называемое "белое море" шламохранилище п/о "Сода", где происходит частичная нейтрализация растворов. Из "белого моря" хлоридные растворы сбрасываются в р. Каму (г. Березники, Россия);

б) отработанные плавы и возгоны сливают в короба, охлаждают, дробят и вывозят в отвал (г. Усть-Каменогорск, Казахстан; г. Запорожье, Украина).

Таким образом, эти методы приводят к безвозвратным потерям ценных компонентов, находящихся в отходах производства. С другой стороны, существующие методы наносят непоправимый ущерб окружающей среде, загрязняя ее легкорастворимыми, высокотоксичными отходами производства.

Известен способ [1] переработки твердых отходов титано-магниевого производства, заключающийся в следующем.

Твердые отходы растворяют в воде и обрабатывают каустическим магнезитом для осаждения гидроксидов железа, алюминия, марганца и кремния. После отделения осадок гидроксидов направляют в отвал, а фильтрат обрабатывают гипохлоритом кальция или хлорной известью. Образовавшийся осадок отделяют, фильтрат смешивают с отработанным электролитом и кристаллизуют искусственный карналлит.

Недостатком данного способа являются безвозвратные потери всех ценных компонентов, за исключением магния и кальция.

Известен способ [2] переработки отходов титано-магниевого производства. Данный способ заключается в следующем. Отходы титанового и магниевого производства перерабатывают раздельно. Отходы титанового производства выщелачивают водой, магниевого производства соляной кислотой, полученные фильтраты смешивают и нейтрализуют магнезитом. Образовавшийся осадок гидроксидов металлов отделяют от раствора, промывают и обрабатывают серной кислотой с получением сульфатов железа, марганца, алюминия. После отделения гидроксидов раствор, содержащий хлориды магния, калия, натрия, кальция смешивают с отработанным электролитом до соотношения MgCl2 KCl 1:1,6 и после выпаривания и охлаждения получают карналлит, используемый для производства металлического магния электролизом.

Недостатком данного способа являются:

в процессе переработки образуются сильно засоленные неутилизируемые растворы, наносящие непоправимый ущерб окружающей среде;

низкая степень утилизации и извлечения ценных компонентов.

Из известных аналогов более близким к заявляемому по совокупности признаков является способ переработки хлоридных отходов титанового производства [3]

Способ по прототипу включает следующие операции:

гидроразмыв отработанного расплава: слив расплава (750-850оС) в воду при соотношении расплав:вода 1:(8.12);

циркуляцию пульпы до получения насыщенных по хлоридам растворов;

нейтрализацию известковым молоком до рН 8,0-8,5 и флокуляцию осадка;

фильтрование и промывку осадка.

Недостатками данного способа являются:

потеря всех ценных компонентов;

образование сильнозасоленных сточных вод, содержащих хлориды кальция, магния, натрия, калия.

Указанные недостатки обусловлены рядом причин. Во-первых, при такой переработке не утилизируются такие ценные компоненты, как хром, железо, марганец, скандий и др. а происходит их обезвреживание осадков суммы гидроксидов металлов. Во-вторых, образуются высококонцентрированные хлоридные растворы, содержащие до 200-250 г/дм3, которые после смешивания с другими стоками сбрасываются в водные бассейны.

Заявляемое техническое решение направлено на решение задачи, заключающейся в обеспечении условий создания безотходной технологии и утилизации ценных компонентов в форме товарных продуктов и/или полупродуктов.

Заданная задача решается предлагаемым способом комплексной переработки отработанных расплавов титановых хлораторов, сущность которого выражается следующей совокупностью существенных признаков:

слив отработанного расплава в воду ("гидроразмыв" расплава);

концентрирование пульпы путем циркуляции до образования насыщенных по хлоридам растворов (пульп);

обработка пульпы раствором полиакриламида, сгущение пульпы;

осаждение из осветленных растворов гидроксидов металлов щелочным реагентом в три стадии;

осаждение на первой стадии при рН 3,5-6,0, преимущественно 4,0-4,5, с отделением от раствора гидроксидов хрома, редких и радиоактивных металлов;

осаждение на второй стадии ведут в присутствии окислителя при рН 2,5-3,5 в течение 20-50 ч с отделением осадка;

на третьей стадии при рН 9,5-11,0 преимущественно при рН 10,0-10,5 в течение 4-6 ч, с последующим отделением осадка.

Отличительными признаками также являются следующие: в качестве щелочного реагента используют гидроксид натрия, оксиды и/или гидроксиды магния и кальция. При использовании оксида и/или гидроксида магния образующиеся растворы пригодны для получения искусственного карналлита по известному способу.

Последовательность операций и значений рН в процессе переработки отработанного расплава титановых хлораторов обусловлена следующим.

Обработка исходного раствора плава щелочным реагентом основана на том, что при понижении кислотности раствора происходит осаждение гидроксидов хрома, цветных, редких и радиоактивных металлов ("черновой хромовый концентрат"). При рН 3,5-5,0, преимущественно 4,0-4,5, наблюдается наиболее полное осаждение гидроксидов (не менее 99,9%). При рН < 3,5 осаждение гидроксидов металлов происходит на 75-80% При рН > 5,0 осаждение вести нецелесообразно в связи с тем, что при этом наблюдается значительное окисление железа (II) до железа (III) и его соосаждение, что приводит к значительным потерям железа и затрудняет последующую переработку чернового хромового концентрата.

Величина рН 2,5-3,5 обработки раствора после отделения чернового хромового концентрата одновременно щелочным реагентом и окислителем, например воздухом, определена из условий селективного осаждения и разделения железа и марганца. При рН < 2,5 осаждения железа не наблюдается, а при рН > 3,5 происходит осаждение железа (II), что ухудшает качество продукта. При рН 2,5-3,5 происходит окисление железа (II) до железа (III) и осаждение его в форме оксигидроксида железа, а марганец остается в растворе.

Интервал рН 9,5-11,0, преимущественно 10,0-10,5, последующей обработки обусловлен тем, что при данном значении рН наблюдается максимальная степень осаждения марганца в виде гидратированного диоксида марганца. При рН < 9,5 происходит неполное осаждение марганца, а при рН > 11,0 происходит неполное окисление марганца (II) до марганца (IV). При этом осаждаются соединения переменного состава xMnO2 y Mn(OH)2 2H2O, что затрудняет его дальнейшую переработку.

Продолжительность процесса извлечения соединений железа в течение 20-50 ч обусловлена тем, что происходит наиболее полное осаждение и окисление соединений железа в форме оксигидроксида железа -FeOOH.

При продолжительности 20 ч не происходит полного окисления железа (II) до железа (III) и осаждения его в виде -FeOOH. При продолжительности 50 ч начинается соосаждение соединений марганца, что приводит к потерям марганца и ухудшению качества получаемого пигмента.

Продолжительность обработки марганецсодержащей пульпы в течение 4-6 ч объясняется тем, что за этот период времени происходит наиболее полное окисление марганца (II) до марганца (IV) с образованием диоксида марганца.

Таким образом, по сравнению с известным способом при осуществлении процесса по предлагаемому способу значительно сокращаются потери ценных компонентов, расширяется ассортимент товарных продуктов и создаются практически все условия для реализации технологии.

Анализ патентной и научно-технической документации свидетельствуют о том, что в источниках информации не обнаружено описание способов, аналогичных предложенному и совпадающих с заявляемым техническим решением по совокупности существенных признаков.

Анализ уровня техники в отношении совокупности всех существенных признаков заявленного технического решения показывает, что предложенный способ соответствует критерию новизны.

Проверка соответствия заявленного изобретения требованию "изобретательского уровня" в отношении совокупности существенных признаков свидетельствует о том, что предлагаемый способ не следует явным образом из известного уровня техники.

В частности, из известного уровня техники явным образом не вытекает тот факт, что осуществление обработки исходного раствора щелочным реагентом для осаждения хрома, редких и радиоактивных металлов, осаждение соединений железа одновременной обработкой щелочным реагентом и окислителем при рН 2,5-3,5 и соединений марганца при рН 9,5-11,0 приведет к достижению технического результата повышение степени обезвреживания отходов, сокращение потерь ценных компонентов, утилизация их в форме товарных продуктов и создание условий для разработки малоотходной технологии.

П р и м е р 1 (по известному способу-прототипу). Отработанный расплав титановых хлораторов сливают в воду при Ж:Т 10:1, полученную пульпу циркулируют 5 раз до получения концентрированных растворов плотностью 1,21 г/см3. Раствор содержит, г/дм3:Fe (II) 35,8; Fe (III) 2,9; Cr 1,95; Mn 7,3; хлоридов К, Na, Ca, Mg и др. 200. Полученную пульпу нейтрализуют известковым молоком до рН 8,5 по известному способу. При этом хром, редкие, радиоактивные металлы, железо, марганец и др. переходят в осадок в виде гидроксидов и оксидов. Помимо этого осадок содержит нерастворимый остаток отработанного расплава (C, Al2O3, SiO2, TiO2) и балластные примеси известкового молока. Образующуюся пульпу фильтруют, непромытый осадок влажностью 50% содержит, мас. Fe 12,2; Cr 0,6; Mn 2,3; до 15 хлоридов Na, K, Ca, Mg в пересчете на сухое вещество. 635 г влажной пасты представляет собой малотоксичную хранимую форму отходов, переработка которой сопряжена с большими трудностями.

Таким образом, при осуществлении процесса по известному способу происходит концентрирование металлов в форме оксидов и гидроксидов и их обезвреживание. Однако получение товарных продуктов не предусмотрено.

П р и м е р 2 (по предлагаемому способу). Раствор состава, приведенного в примере 1, перерабатывают по предлагаемому способу. 1 л раствора обрабатывают щелочным раствором до рН 4,5. При этом Cr, редкие, радиоактивные металлы переходят в осадок. Степень осаждения металлов составляет 99,9-100% и образуется 77,9 г влажной пасты чернового хромового концентрата (влажность 75% ). В пересчете на сухое вещество черновой хромовый концентрат содержит, мас. Сr 10; Sc 0,26; Fe 7,4, и используется для получения индивидуальных соединений хрома и оксида скандия.

В табл.1 приведены результаты обработки раствора щелочным реагентом при различном значении рН.

При рН 5,0 наблюдается значительное соосаждение соединений железа.

После отделения чернового хромового концентрата, направляемого на извлечение и получение индивидуальных соединений хрома, скандия и др. раствор содержит, г/дм3: железо 34,8; марганец 6,95; этот раствор обрабатывают щелочным реагентом и одновременно кислородом воздуха, поддерживая величину рН 2,5-3,5.

В табл.2 приведено влияние продолжительности процесса на степень извлечения железа в форме -FeOOH (оксигидроксида железа).

После отделения оксигидроксида железа фильтрат вновь обрабатывают щелочным реагентом и кислородом воздуха.

В табл. 3 приведено влияние величины рН на степень осаждения марганца и состав твердой фазы.

Из данных табл.3 следует, что при рН 9,5 наблюдается неполное осаждение марганца, а при рН > 10,5 осаждаются соединения марганца переменного состава, что затрудняет их дальнейшую переработку.

При рН 10,5 железо осаждается в виде гидроксида железа, а марганец в виде гидратированного диоксида. При этом образуется 35,6 марганцевого концентрата влажностью 60% содержащего 29,3% диоксида марганца. Осадок отделяют от раствора и используют для получения индивидуальных соединений марганца.

Фильтрат, хлоридный раствор при использовании в качестве щелочного реагента оксида/гидроксида магния используют для получения искусственного карналлита.

Таким образом, предложенный способ переработки отработанного расплава титановых хлораторов позволяет сократить потери ценных компонентов с получением ценных товарных продуктов и/или полупродуктов и обеспечить условия для создания малоотходной технологии. 


ФОРМУЛА ИЗОБРЕТЕНИЯ



СПОСОБ ПЕРЕРАБОТКИ ОТРАБОТАННОГО РАСПЛАВА ТИТАНОВЫХ ХЛОРАТОРОВ, включающий слив расплава в воду, концентрирование пульпы путем циркуляции, обработку раствором полиакриламида, сгущение пульпы, осаждение из осветленных растворов гидроксидов металлов щелочным реагентом, отличающийся тем, что осаждение гидроксидов металлов ведут последовательно в три стадии: на первой стадии при рН 3,5 5,0 с отделением образующегося осадка гидроксидов хрома, редких и радиоактивных металлов от раствора, на второй стадии осаждение ведут в присутствии окислителя при рН 2,5 3,5 в течение 20 50 ч с отделением осадка, на третьей при рН 9,5 11,0, преимущественно 10,0 10,5 в течение 4 6 ч.


ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян

Независимый научно технический портал
Устройства и способы извлечения цветных, редкоземельных и благородных металлов






СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска: "и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "И" означает, что будут найдены только те страници, где встречается каждое из ключевых слов. При использовании режима "или" результатом поиска будут все страници, где встречается хотя бы одно ключевое слово.

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+извлечение -золота".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "золото" будут найдены слова "золотой", "золотое" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу ("золото!").




Рейтинг@Mail.ru