СПОСОБ ОПРЕДЕЛЕНИЯ СЕРЕБРА

СПОСОБ ОПРЕДЕЛЕНИЯ СЕРЕБРА


RU (11) 2287157 (13) C1

(51) МПК
G01N 31/22 (2006.01)
G01N 21/76 (2006.01) 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 07.12.2007 - действует 

--------------------------------------------------------------------------------

Документ: В формате PDF 
(21) Заявка: 2005130897/04 
(22) Дата подачи заявки: 2005.10.05 
(24) Дата начала отсчета срока действия патента: 2005.10.05 
(45) Опубликовано: 2006.11.10 
(56) Список документов, цитированных в отчете о поиске: Алимарин И.П., Жукова Л.Н., Рунов В.К., Симонов Е.Ф, Талуть И.П., Трофимчук А.К. Журнал аналитической химии. 1991, т.46, №4, с.695-701. RU 2253618 С1, 10.06.2005. RU 2076068 С1, 27.03.1997. SU 404414 A1, 15.12.1974. SU 1096579 А, 07.06.1984. SU 1682866 A1, 24.04.1989. 
(72) Автор(ы): Лосев Владимир Николаевич (RU); Буйко Елена Васильевна (RU); Трофимчук Анатолий Константинович (UA) 
(73) Патентообладатель(и): Государственное образовательное учреждение высшего профессионального образования "Красноярский государственный университет" (RU) 
Адрес для переписки: 660041, г.Красноярск, пр. Свободный-79, КрасГУ, отдел интеллектуальной собственности 

(54) СПОСОБ ОПРЕДЕЛЕНИЯ СЕРЕБРА

Изобретение относится к области аналитической химии элементов, а именно к методам определения серебра, и может быть использовано при его определении в технологических растворах, природных и техногенных водах. В способе определения серебра, включающем приготовление раствора серебра(I) в азотной кислоте, извлечение серебра(I) из раствора сорбентом и переведение его в комплексное соединение на поверхности сорбента, отделение от раствора и обработку сорбента, измерение коэффициента диффузного отражения поверхностного комплекса серебра(I) и оценку содержания серебра по градуировочному графику, в качестве сорбента используют силикагель, химически модифицированный дипропилдисульфидными группами, обработку сорбента осуществляют 1·10-5-1·10-4 М раствором тиокетона Михлера в 40-60%-ном растворе этилового спирта в воде, а измерение коэффициента диффузного отражения осуществляют при 520 нм. Достигается снижение предела обнаружения. 3 табл.




ОПИСАНИЕ ИЗОБРЕТЕНИЯ


Изобретение относится к области аналитической химии элементов, а именно к методам определения серебра, и может быть использовано при его определении в технологических растворах, природных и техногенных водах.

Для определения серебра в объектах различного вещественного состава широко используется фотометрический метод, характеризующийся высокой чувствительностью и селективностью, простотой выполнения определения и не требующий дорогостоящего оборудования.

Одним из широко используемых приемов снижения пределов обнаружения фотометрическим методом и повышения селективности определения серебра в объектах различного вещественного состава является сочетание предварительного сорбционного выделения серебра сорбентами различной природы и последующее его фотометрическое определение непосредственно в фазе сорбента или после элюирования в растворе. Для фотометрического определения необходимо выполнение условия образования окрашенного соединения серебра с функциональными группами сорбента или с реагентами, входящими в состав элюирующего раствора.

Известен способ фотометрического определения серебра [Гурьева Р.Ф., Савин С.Б. Концентрирование благородных металлов в виде комплексов с органическими реагентами на полимерном носителе и последующее определение их в твердой фазе. // Журнал аналитической химии. 2000. Т.55. №3. С.280-285]. Способ основан на переведении серебра(I) в комплексное соединение с органическим реагентом тиродином в растворе, сорбционное выделение полученного комплекса на диске из полимерной мембраны и измерение коэффициента диффузного отражения при 540 нм.

Способ предусматривает выполнение следующих операций:

- в анализируемом растворе, содержащем серебро(I), с помощью концентрированной азотной кислоты доводят ее концентрацию до 0,01-0,2 М;

- добавляют 0,05-0,5 мл 0,01%-ного раствора тиродина, разбавляют до метки и выдерживают при комнатной температуре в течение нескольких минут;

- пропускают полученный раствор через мембрану с помощью водоструйного насоса, для этого диск полимерной мембраны, смоченный водой, помещают на стеклянный фильтр и закрепляют в специальном сборнике;

- вынимают диск полимерной мембраны, помещают его на диск из фильтровальной бумаги и через 2-5 мин регистрируют спектр диффузного отражения.

К недостаткам способа можно отнести узкий диапазон определяемых содержаний серебра, трудоемкость проведения сорбционного выделения полученного в жидкой фазе комплекса на диске из полимерного материала.

Наиболее близким к предлагаемому способу по технической сущности и достигаемым результатам является способ определения серебра [Алимарин И.П., Жукова Л.Н., Рунов В.К., Симонов Е.Ф., Талуть И.П., Трофимчук А.К., Молекулярные сорбционно-спектроскопические методы анализа. Определение серебра с применением кремнеземов, химически модифицированных азот-серосодержащими реагентами, и дитизона. // Журнал аналитической химии. 1991. Т.46. №4. С.695-701]. Способ основан на сорбционном выделении серебра(I) из растворов в диапазоне 4 М Н2SO4 (HNO3) - рН 8 кремнеземом, химически модифицированным N-пропил-N'-бензоилтиомочевиной, образовании на поверхности сорбента окрашенного смешаннолигандного комплекса серебра с функциональными группами сорбента и дитизоном, измерении коэффициента диффузного отражения.

Способ предусматривает выполнение следующих операций:

- в анализируемый раствор с кислотностью в диапазоне 4 М H2SO4 (HNO3) - рН 8, содержащем серебро(I), вносят сорбент - кремнезем, химически модифицированный N-пропил-N'-бензоилтиомочевиной, и встряхивают на механическом вибраторе в течение 30 мин;

- сорбент отделяют от раствора декантацией и дважды (по 2 мл) промывают диметилформамидом или этанолом;

- обрабатывают сорбент 10 мл 5·10-5 М раствора дитизона в хлороформе или четыреххлористом углероде;

- отделяют сорбент от раствора дитизона декантацией и промывают его трижды по 5 мл 0,015 М раствором аммиака;

- измеряют коэффициент диффузного отражения при 510 нм.

К недостаткам способа можно отнести высокий предел обнаружения, длительность и многостадийность определения, использование вредных для здоровья людей веществ - диметилформамида, хлороформа.

Техническим результатом является снижение предела обнаружения серебра, сокращение времени определения.

Указанный технический результат достигается тем, что в способе определения серебра, включающем приготовление раствора серебра(I) а азотной кислоте, извлечение серебра(I) из раствора сорбентом и переведение его в комплексное соединение на поверхности сорбента, отделение от раствора и обработку сорбента, измерение коэффициента диффузного отражения поверхностного комплекса серебра(I) и оценку содержания серебра по градуировочному графику, новым является то, что в качестве сорбента используют силикагель, химически модифицированный дипропилдисульфидными группами, обработку сорбента осуществляют 1·10-5-1·10-4 М раствором тиокетона Михлера в 40-60%-ном растворе этилового спирта в воде, а измерение коэффициента диффузного отражения осуществляют при 520 нм.

Сущность способа заключается в том, что находящееся в растворе с кислотностью в диапазоне от 2 М HNO3 - рН 8 серебро(I) количественно (степень извлечения ? 99%) извлекается силикагелем, химически модифицированным дипропилдисульфидными группами, с временем установления сорбционного равновесия, не превышающем 5 мин. В процессе сорбции на поверхности сорбента образуются координационные соединения серебра(I) с дипропилдисульфидными группами, не имеющие окраски. В процессе обработки сорбента, содержащего на поверхности серебро(I), водно-этанольными растворами тиокетона Михлера происходит координация серебром(I) молекул тиокетона Михлера и образование на поверхности сорбента интенсивно окрашенного в красный цвет комплексного смешаннолигандного соединения, имеющего в спектре диффузного отражения интенсивный максимум при 520 нм. Образование интенсивно окрашенного смешаннолигандного комплекса серебра на поверхности сорбента происходит быстро, время образования комплекса не превышает 2 мин. Интенсивность окраски и значения коэффициента диффузного отражения постоянны при использовании концентрации тиокетона Михлера в диапазоне 1·10-5-1·10-4 М в 40-60%-ном растворе этилового спирта в воде.

Уменьшение или увеличение рН раствора, из которого проводят сорбцию серебра(I), приводит к снижению степени извлечения и к увеличению предела обнаружения серебра с использованием тиокетона Михлера (таблица 1). Уменьшение концентрации тиокетона Михлера приводит к уменьшению интенсивности окраски сорбента и соответственно к увеличению предела обнаружения серебра (таблица 2). Уменьшение или увеличение концентрации этилового спирта в воде приводит к увеличению предела обнаружения серебра (таблица 3).

В исследуемый раствор с кислотностью в диапазоне 2 М HNO3 - рН 8, содержащий серебро(I), вносят сорбент - силикагель, химически модифицированный дипропилдисульфидными группами, интенсивно перемешивают в течение 5 мин, сорбент отделяют от раствора декантацией. К сорбенту приливают 10 мл 1·10 -5-1·10-4 М раствора тиокетона Михлера в 50%-ном этаноле, перемешивают 2 мин, сорбент вынимают, помещают в фторопластовую кювету и измеряют коэффициент диффузного отражения при 520 нм. Предел обнаружения, рассчитанный по 3S-критерию, равен 0,5 мкг серебра на 0,1 г сорбента. Данное количество серебра является той минимальной концентрацией, которую удается достоверно зарегистрировать на данной навеске сорбента по предлагаемой методике на существующих приборах относительно сигнала фона. Высокая скорость установления сорбционного равновесия в статическом режиме (время установления сорбционного равновесия не превышает 5 мин) и высокая степень извлечения (99%) позволяет сконцентрировать и полностью извлечь серебро(I) даже из разбавленных растворов в динамическом режиме. Применение динамического режима сорбции позволяет сконцентрировать серебро на используемой массе сорбента из больших объемов разбавленных растворов. Так, при сорбции серебра из 10 мл раствора и последующей обработке 5·10-5 М раствором ТКМ в 50%-ном растворе этилового спирта в воде предел обнаружения серебра составляет 0,05 мкг/мл, а при сорбции из 100 мл раствора - 5·10 -3 мкг/мл. Таким образом, содержание определяемого по предлагаемой методике серебра в произвольном объеме раствора должно быть не менее 0,5 мкг. Линейность градуировочного графика сохраняется до 10 мкг на 0,1 г сорбента.

Пример 1 (прототип). В раствор, содержащий 10 мкг серебра(I), вносят сорбент - кремнезем, химически модифицированный N-пропил-N'-бензоилтиомочевиной, интенсивно перемешивают в течение 30 мин. Сорбент отделяют от раствора декантацией, дважды по 2 мл промывают диметилформамидом или этанолом. К сорбенту приливают 10 мл 5,0·10-4 М раствора дитизона в хлороформе и интенсивно перемешивают в течение 5 мин, раствор дитизона сливают, а сорбент трижды по 5 мл обрабатывают 0,015 М раствором аммиака. Сорбент отделяют от аммиачного раствора, переносят в фторопластовую кювету и измеряют коэффициент диффузного отражения при 510 нм. Содержание серебра находят по градуировочному графику, построенному в аналогичных условиях. Найдено 10,1±0,5 мкг.

Пример 2 (предлагаемый способ). К 10 мл раствора с кислотностью в диапазоне 2 М HNO3 - рН 8, содержащему 2,0 мкг серебра, вносят сорбент - силикагель, химически модифицированный дипропилдисульфидными группами, интенсивно перемешивают в течение 5 мин, сорбент отделяют от раствора декантацией. К сорбенту приливают 10 мл 5·10-5 М раствора тиокетона Михлера в 50%-ном зтаноле, перемешивают 2 мин, сорбент вынимают, помещают в фторопластовую кювету и измеряют коэффициент диффузного отражения при 520 нм.

Количество серебра находят по градуировочному графику, построенному в аналогичных условиях. Найдено 1,98±0,05 мкг.

Пример 3 (предлагаемый способ). К 10 мл раствора с кислотностью в диапазоне 2 М HNO3 - рН 8, содержащему 10 мкг серебра, вносят сорбент - силикагель, химически модифицированный дипропилдисульфидными группами, интенсивно перемешивают в течение 5 мин, сорбент отделяют от раствора декантацией. К сорбенту приливают 10 мл 5·10 -5 М раствора тиокетона Михлера в 50%-ном этаноле, перемешивают 2 мин, сорбент вынимают, помещают в фторопластовую кювету и измеряют коэффициент диффузного отражения при 520 нм.

Количество серебра находят по градуировочному графику, построенному в аналогичных условиях. Найдено 9,8±0,3 мкг.

Пример 4 (предлагаемый способ). 500 мл раствора с кислотностью в диапазоне 2 М HNO 3 - рН 8, содержащий 2 мкг серебра, пропускают через хроматографическую колонку, содержащую 0,1 г сорбента, со скоростью 5 мл/мин. Затем через колонку пропускают 10 мл 5·10-5 М раствора тиокетона Михлера в 50%-ном этаноле со скоростью 2 мл/мин. Сорбент вынимают, помещают в фторопластовую кювету и измеряют коэффициент диффузного отражения при 520 нм.

Количество серебра находят по градуировочному графику, построенному в аналогичных условиях. Найдено 1,9±0,2 мкг.

Способ характеризуется высокой чувствительностью, простотой выполнения и не требует использования дорогостоящего оборудования и вредных веществ. Использование силикагеля, химически модифицированного дипропилдисульфидными группами, позволяет в пять раз сократить время выполнения анализа и в 4 раза снизить предел обнаружения серебра непосредственно в фазе сорбента по сравнению с прототипом.






ФОРМУЛА ИЗОБРЕТЕНИЯ


Способ определения серебра, включающий приготовление раствора серебра (I) в азотной кислоте, извлечение серебра (I) из раствора сорбентом и переведение его в комплексное соединение на поверхности сорбента, отделение от раствора и обработку сорбента, измерение коэффициента диффузного отражения поверхностного комплекса серебра (I) и оценку содержания серебра по градуировочному графику, отличающийся тем, что в качестве сорбента используют силикагель, химически модифицированный дипропилдисульфидными группами, обработку сорбента осуществляют 1·10-5-1·10-4 М раствором тиокетона Михлера в 40-60%-ном растворе этилового спирта в воде, а измерение коэффициента диффузного отражения осуществляют при 520 нм.