СПОСОБ ПЕРЕРАБОТКИ МЕДЬСОДЕРЖАЩЕГО СЫРЬЯ

СПОСОБ ПЕРЕРАБОТКИ МЕДЬСОДЕРЖАЩЕГО СЫРЬЯ


RU (11) 2133293 (13) C1

(51) 6 C22B15/00 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 07.12.2007 - действует 

--------------------------------------------------------------------------------

(21) Заявка: 98119706/02 
(22) Дата подачи заявки: 1998.11.03 
(45) Опубликовано: 1999.07.20 
(56) Список документов, цитированных в отчете о поиске: SU 1636463 A1, 23.03.91. SU 1446180 A1, 23.12.88. US 4069041 A, 17.01.78. Сошникова Л.А., Купченко М.М. Переработка медеэлектролитных шламов. - М.: Металлургия, 1978, с.21 - 23. 
(71) Заявитель(и): Акционерное общество открытого типа "Уралэлектромедь" 
(72) Автор(ы): Плеханов К.А.; Лебедь А.Б.; Шевелева Л.Д.; Хафизов Т.М.; Чиркова С.С.; Волынчук А.В. 
(73) Патентообладатель(и): Акционерное общество открытого типа "Уралэлектромедь" 
Адрес для переписки: 624080, Верхняя Пышма, Свердловской обл., ул.Ленина 1, АООТ "Уралэлектромедь", Технический отдел Зверевой Е.В. 

(54) СПОСОБ ПЕРЕРАБОТКИ МЕДЬСОДЕРЖАЩЕГО СЫРЬЯ 

Изобретение может быть использовано для переработки медистых материалов, содержащих редкие и благородные металлы. Анодные шламы перерабатывают совместно с высокомедистым шлаком, содержащим редкие и благородные металлы, при процентом соотношении шлака к шламу (20 - 10) : (80 - 90) путем сульфатизации концентрированной серной кислотой и последующего выщелачивания водой, повышается степень извлечения редких и благородных металлов в нерастворимый остаток, а меди - в раствор. 1 табл. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к области цветной металлургии и может быть использовано для переработки медистых материалов, содержащих редкие и благородные металлы.

К высокомедистым шламам, содержащим благородные и редкие металлы, относятся и шлаки медеочистки от плавки на серебряно-золотой сплав в технологии переработки медеэлектролитных шламов.

Высокомедистые шлаки являются продуктом окислительного периода и помимо меди содержат селен, теллур и благородные металлы. Состав шлаков: 15-20% меди; 0,2-0,3% никеля; 2,5-3,5% селена; 2,5-3,0% теллура; 4,0-4,2% серебра; 0,09-0,1% золота.

Характерным для этих шлаков является то, что часть редких металлов и серебра находятся в оксидной форме, что и обуславливает их возврат в переработку в восстановительный период плавки. (Сошникова Л.А., Купченко М.Н. Переработка медеэлектролитных шламов. М.: Металлургия, 1978, с.133-144).

Недостатками возврата шлака являются:

1. Снижение производительности печи по исходному материалу за счет переработки оборота.

2. Образование дополнительного количества бедных окончательных шлаков, в которых содержится до 40-60 г/т золота и 20 кг/т серебра. Переработка этих шлаков на медеплавильных предприятиях приводит к неизбежным безвозвратным потерям металлов, увеличению доли незавершенного производства и себестоимости производства драгметаллов.

Поэтому выбор оптимального способа переработки высокомедистых шлаков, содержащих редкие и благородные металлы, является актуальной технологической задачей.

Известны способы гидрометаллургической переработки медьсодержащих шлаков, основанные на процессах сульфатизации.

Сухофазная сульфатизация включает интенсивное перемешивание медеплавильного шлака с серной кислотой и водой в соотношении 1:1:1. В результате получают сухой твердый материал, в котором находившиеся металлы присутствуют в водорастворимой форме. Растворимые соединения металлов выщелачивают и отделяют от нерастворимого силикатного осадка. (М.Ситтиг. Извлечение металлов и неорганических соединений из отходов. М.: Металлургия, 1985, c.119).

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа относят то, что в известном способе перераспределение серебра между нерастворимым осадком и раствором потребует операции выделения серебра из сульфатных медных растворов и усложнит технологическую схему. Кроме того, сухофазная сульфатизация сопровождается разогревом сухой массы и образованием газовой фазы, в которую будет частично удаляться селен; обезвреживание газовой фазы, извлечение селена удорожает переработку.

Наиболее близким по технической сущности к заявляемому способу является способ переработки медеэлектролитного шлама в концентрированной серной кислоте при температуре 150-300oC, выщелачивание шлама холодной водой и последующую промывку шлама горячим конденсатом с аэрацией пульпы воздухом (Авт. свидетельство СССР N 1636463, МКИ3 С 22 В 15/00), который принят в качестве прототипа.

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа относят следующее:

1. Перераспределение селена, теллура и серебра между нерастворимым осадком и медным раствором (определено экспериментально).

2. Переход селена, теллура и серебра обуславливает операцию выделения этих элементов из медьсодержащего раствора, что усложняет технологическую схему.

Анализ описанных выше аналогов и прототипа выявил, что ни в одном из них не достигается желаемый результат - полное извлечение редких и благородных металлов в нерастворимый остаток, а меди - в раствор.

Авторами настоящей заявки на изобретение способ переработки медьсодержащего сырья с достижением указанного технического результата создан.

Переработку анодного шлама ведут способом жидкофазной сульфатизации при соотношении в загрузке медистый шлак: медеэлектролитный шлам (10-20%):(90-80%). При совместной переработке медеэлектролитного шлама и медистого шлака окисленные формы серебра восстанавливаются до металлического состояния и переходят в нерастворимый осадок, а медь окисляется и образует растворимый сульфат.

Заявляемый способ переработки медьсодержащих материалов отвечает всем критериям патентоспособности. Он является новым, т.к. аналогичные известные из уровня техники решения не обладают тождественной совокупностью признаков, о чем свидетельствует проведенный выше анализ известных способов.

От прототипа заявляемый способ отличается тем, что сульфатизация медного шлака на серебряно-золотой сплав проводят при соотношении медистый шлак: медеэлектролитный шлам (10-20%):(90-80%).

Сущность заявляемого способа не следует явным образом из известного уровня техники, что позволяет сделать вывод о соответствии способа критерию "Изобретательский уровень" т. к. позволяет не только практически полностью исключить потери селена, теллура и серебра с медными растворами, но и снизить выбросы сернистого газа в сравнении с сульфатизацией медеэлектролитного шлама без дозировки шлака медеочистки.

Образование диоксида серы при сульфатизации материалов, содержащих металлическую медь, обусловлено окислительными свойствами концентрированной серной кислоты при высоких температурах:

Cu + 2H2SO4 = CuSO4 + SO2 + 2Н2O,

При совместной переработке металлизированного медеэлектролитного шлама и медистого шлака, в котором более 50% серебра представлено окисленными формами, происходит известное взаимодействие:

Cu0 + 2Ag+ ---> Cu2+ + Ag0,

Т. е. окисленные формы серебра восстанавливаются до металлического состояния и переходят в нерастворимый осадок, а медь окисляется и образует растворимый сульфат. За счет этих взаимодействий снижается расход кислоты как окислителя.

Режимы осуществления способа подобраны экспериментально. Во всех вариантах извлечение меди и никеля в раствор составляло 93-97%.

При соотношении в загрузке сульфатизации медистого шлака к медеэлектролитному шламу, равном 30% : 70% в растворах выщелачивания зафиксированы высокие концентрации селена, теллура и серебра, что привело к снижению извлечения в нерастворимый осадок: серебра на 13.7%, селена на 4%, теллура на 35.5%.

При соотношении в загрузке сульфатизации медистого шлака к медеэлектролитному шламу, равном 6% : 94% достигали практически полного извлечения селена, теллура и серебра в нерастворимый осадок, однако зафиксировали выделение диоксида серы.

Пример. В реактор с механическим перемешиванием и нагревом на операцию сульфатизации поступают медеэлектролитный шлам, измельченный медистый шлак и концентрированная серная кислота при соотношении Т:Ж, равном 1:4. Пульпа подогревается до 100oC, а затем за счет экзотермических реакций температура повышается до 120-145oC. После окончания операции сульфатизации полученная пульпа подвергается выщелачиванию водой. При этом сульфатные формы цветных металлов (меди и никеля) переходят в раствор, содержание серной кислоты уменьшается до 300 г/л. Полученная пульпа фильтруется, твердый осадок анализируется на содержание меди и никеля, а раствор - на содержание селена, теллура и серебра. В опытах концентрация меди и никеля в осадке не превышала 1%.

Результаты промышленных испытаний по предлагаемому способу и лабораторных исследований (при выходе за рамки рекомендуемых соотношений) представлены в таблице (см. в конце описания).

Как следует из приведенных результатов, ведение процесса переработки шлаков медеочистки плавкой на серебряно-золотой сплав в химико-металлургическом цехе АО "Уралэлектромедь" в условиях заявляемого способа позволяют считать его промышленно применимым.

Преимущества промышленного использования заявляемого способа:

1. Увеличение производительности плавки на серебряно-золотой сплав за счет снижения объемов оборотных материалов.

2. Снижение количества шлаков, передаваемых на переработку в медеплавильное производство, что снизит долю незавершенного производства и безвозвратные потери драгметаллов.

3. Возможность направить медь и никель шлаков медеочистки на производство готовой продукции - медный и никелевый купоросы.

4. Снижение выбросов диоксида серы в расчете на переработку медеэлектролитного шлама. 


ФОРМУЛА ИЗОБРЕТЕНИЯ



Способ переработки анодных шламов медеэлектролитного производства, включающий сульфатизацию концентрированной серной кислотой при повышенной температуре и последующее выщелачивание водой, отличающийся тем, что анодные шламы перерабатывают совместно с высокомедистым шлаком, содержащим редкие и благородные металлы, при процентном соотношении шлака к шламу (20 - 10) : (80 - 90).